RESUMO
A large amount of lithium-ion storage in Si-based anodes promises high energy density yet also results in large volume expansion, causing impaired cyclability and conductivity. Instead of restricting pulverization of Si-based particles, herein, we disclose that single-walled carbon nanotubes (SWNTs) can take advantage of volume expansion and induce interfacial reactions that stabilize the pulverized Si-based clusters in situ. Operando Raman spectroscopy and density functional theory calculations reveal that the volume expansion by the lithiation of Si-based particles generates â¼14% tensile strains in SWNTs, which, in turn, strengthens the chemical interaction between Li and C. This chemomechanical coupling effect facilitates the transformation of sp2-C at the defect of SWNTs to Li-C bonds with sp3 hybridization, which also initiates the formation of new Si-C chemical bonds at the interface. Along with this process, SWNTs can also induce in situ reconstruction of the 3D architecture of the anode, forming mechanically strengthened networks with high electrical and ionic conductivities. As such, with the addition of only 1 wt % of SWNTs, graphite/SiOx composite anodes can deliver practical performance well surpassing that of commercial graphite anodes. These findings enrich our understanding of strain-induced interfacial reactions, providing a general principle for mitigating the degradation of alloying or conversion-reaction-based electrodes.
RESUMO
As great potential recycling strategy, the direct regeneration of spent LiCoO2 (LCO) is beneficial for lowering environmental pollutions and promoting global sustainability. However, owing to the using of binder and electrolyte, some fluorine impurities would be remained into spent materials. Considering the doping behaviors of F-elements, their suitable content introducing would facilitate the energy-storage abilities of regenerated LCO. Herein, through the tailored introduction of F-elements, spent LCO are successfully regenerated with physical-chemical evolutions. Benefitting from the existed oxygen vacancies, the diffusion energy-barrier of F-elements is reduced from 1.73 eV to 0.61 eV, facilitating the establishment of gradient F-doped subsurface, along with the formation of rigid CoO5F. Meanwhile, excess F-elements (1 wt.%, as a threshold) lead to the formation of LiF passivation layer on the surface. Thus, the as-optimized sample displays a considerable capacity of 154.4 mAh g-1 even at 5.0 C, with retention rate (88.3%) in 3.0~4.5V. Supported by detailed electrochemical and kinetic analysis, the structural advantages are confirmed to boost the improved redox activity of Co-ions and the alleviating of irreversible oxygen-release. Give this, the work is anticipated to reveal the evolutions of regenerated LCO with the introduced F-elements, whilst providing the practical regeneration strategies toward excellent high-voltage properties.
RESUMO
High-strength low-alloy steels are widely used, but their traditional heat-treatment process is complex, energy-intensive, and makes it difficult to fully exploit the material's potential. In this paper, the electropulsing processing technology was applied to the quenching and tempering process of ZG25SiMn2CrB steel. Through microstructural characterization and mechanical property testing, the influence of electropulsing on the solid-state phase transition process of annealing steel was systematically studied. The heating process of the specimen with the annealing state (initial state) is the diffusion-type transition. As the discharge time increased, the microstructure gradually transformed from ferrite/pearlitic to slate martensite. Optimal mechanical properties and fine microstructure were achieved after quenching at 500 ms. The steel subjected to rapid tempering with 160 ms electropulsing exhibited good, comprehensive mechanical properties (tensile strength 1609 MPa, yield strength 1401.27 MPa, elongation 11.63%, and hardness 48.68 HRC). These favorable mechanical properties are attributed to the coupled impact of thermal and non-thermal effects induced by high-density pulse current. Specifically, the thermal effect provides the thermodynamic conditions for phase transformation, while the non-thermal effect reduces the nucleation barrier of austenite, which increases the nucleation rate during instantaneous heating, and the following rapid cooling suppresses the growth of austenite grains. Additionally, the fine microstructure prevents the occurrence of temper brittleness.
RESUMO
Sodium-selenium (Na-Se) batteries have gained attention due to their high energy density and power density, resulting from the liquid-liquid reaction at the interface in the dimethoxyethane electrolyte. Nevertheless, the pronounced shuttle effect of polyselenides causes low coulomb efficiency and inadequate cycling stability for Na-Se batteries. Herein, the iron nanoparticles surface modified accordion-like Ti3C2Tx MXene (MXene/Fe) synthesized via the molten salt etching is utilized as the host of Se species for high-performance Na-Se battery cathode. Benefiting from the layered structure and chemical adsorption of accordion-like MXene, the shuttle effect of the cathode is effectively inhibited. Simultaneously, electrochemical kinetics is boosted due to the catalytic effect of Fe nanoparticles, which facilitate the transformation of polyselenide from long-chain to short-chain, contributing to pseudocapacitive capacity. Consequently, the Se-based cathode delivers a steady capacity of 575.0 mA h g-1 at 0.2 A/g, and even a high capacity of 500 mAh/g at 50 A/g based on the mass of Se@MXene/Fe electrode, indicating the ultrafast Na+ ion storage. Most notably, this structure demonstrated remarkable long-term cycling stability for 5000 cycles with a high capacity retention of 97.4 %. The electrochemical energy storage mechanism is further revealed by in situ Raman. Herein, the confinement-catalysis structure shines light on inhibiting shuttling and facilitating ultrafast ion storage.
RESUMO
This research examined the impact of exogenous thermophilic bacteria and ripening agents on greenhouse gas (GHG) emission, enzyme activity, and microbial community during composting. The use of ripening agents alone resulted in a 30.9 % reduction in CO2 emissions, while the use of ripening agents and thermophilic bacteria resulted in a 50.8 % reduction in N2O emissions. Pearson's analysis showed that organic matter and nitrate nitrogen were the key parameters affecting GHG emissions. There was an inverse correlation between CO2 and CH4 releases and methane monooxygenase α subunit and N2O reductase activity (P<0.05). Additionally, N2O emissions were positively related to ß-1, 4-N-acetylglucosaminidase, and ammonia monooxygenase activity (P<0.05). Deinococcota, Chloroflexi, and Bacteroidota are closely related to CO2 and N2O emissions. Overall, adding thermophilic bacteria represents an effective strategy to mitigate GHG emissions during composting.
Assuntos
Bactérias , Compostagem , Gases de Efeito Estufa , Bactérias/metabolismo , Compostagem/métodos , Dióxido de Carbono , Metano/metabolismo , Óxido Nitroso/metabolismo , Microbiologia do Solo , Microbiota/fisiologia , Solo/químicaRESUMO
Electron injection effectively induces the formation of a 1T-rich phase to address the low conductivity of MoSe2. Nevertheless, overcoming the inherent metastability of the 1T phase (particularly during the conversion reactions that entail the decomposition-reconstruction of MoSe2 and volume expansion) remains a challenge. Guided by DFT results, we designed a composite with bimetal selenides-based heterostructures anchored on reduced graphene oxide (rGO) nanosheets (G-Cu2Se@MoSe2) to obtain stabilized 1T-rich MoSe2 and enhanced ion transfer. The construction of 1T-rich MoSe2 and built-in electric fields (BiEF) through electron transfer at the heterointerfaces were realized. Moreover, the rGO-metal selenides heterostructures with in situ-formed interfacial bonds could facilitate the reconstruction of the 1T-rich MoSe2-involved heterostructure and interfacial BiEF. Such a dual heterostructure endowed G-Cu2Se@MoSe2 with an excellent rate capability with a capacity of 288 mA h g-1 at 50 A g-1 and superior cycling stability with a capacity retention ratio of 89.6% (291 mA h g-1) after 15 000 cycles at 10 A g-1. Insights into the functional mechanism and structural evolution of the 1T MoSe2-involved dual heterostructure from this work may provide guidelines for the development of MoSe2 and phase-engineering strategies for other polymorphistic materials.
RESUMO
The commercialization of lithium-sulfur (Li-S) batteries is challenging, owing to factors like the poor conductivity of S, the 'shuttle effect', and the slow reaction kinetics. To address these challenges, MoP quantum dots were decorated on hollow carbon spheres (MoPQDs/C) in this study and used as an efficient lithium polysulfides (LiPSs) adsorbents and catalysts. In this approach polysulfides are effectively trapped through strong chemisorption and physical adsorption while simultaneously facilitating LiPSs conversion by enhancing the reaction kinetics. MXene serves as a flexible physical barrier (MoPQDs/C@MXene), further enhancing the confinement of LiPSs. Moreover, both materials are conductive, significantly facilitating electron and charge transfer. Additionally, the flexible MoPQDs/C@MXene-S electrode offers a large specific surface area for sulfur loading and withstand volume expansion during electrochemical processes. As a result, the MoPQDs/C@MXene-S electrode exhibits excellent long-term cyclability and maintains a robust specific capacity of 992 mA h g-1 even after 800cycles at a rate of 1.0C (1C = 1675 mA g-1), with a minimal capacity decay rate of 0.034 % per cycle. This work proposes an efficient strategy to fabricate highly efficient electrocatalysts for advanced Li-S batteries.
RESUMO
The pressing crisis of clean water shortage requires membranes to possess effective ion sieving as well as fast water flux. However, effective ion sieving demands reduction of pore size, which inevitably hinders water flux in hydrophilic membranes, posing a major challenge for efficient water/ion separation. Herein, we introduce anomalous water molecular gating based on nanofiltration membranes full of graphene capillaries at 6 Å, which were fabricated from spontaneous π-π restacking of island-on-nanosheet graphitic microstructures. We found that the membrane can provide effective ion sieving by suppressing osmosis-driven ion diffusion to negligible levels (~10-4 mol m-2 h-1); unexpectedly, ultrafast bulk flow of water (45.4 L m-2 h-1) was still functional with ease, as gated on/off by adjusting hydrostatic pressures within only 10-2 bar. We attribute this seemingly incompatible observation to graphene nanoconfinement effect, where crystal-like water confined within the capillaries hinders diffusion under osmosis but facilitates high-speed, diffusion-free water transport in the way analogous to Newton's cradle-like Grotthus conduction. This strategy establishes a type of liquid-solid-liquid, phase-changing molecular transport for precise and ultrafast molecular sieving.
RESUMO
Lithium-sulfur (Li-S) batteries have emerged as one of the most attractive alternatives for post-lithium-ion battery energy storage systems, owing to their ultrahigh theoretical energy density. However, the large-scale application of Li-S batteries remains enormously problematic because of the poor cycling life and safety problems, induced by the low conductivity , severe shuttling effect, poor reaction kinetics, and lithium dendrite formation. In recent studies, catalytic techniques are reported to promote the commercial application of Li-S batteries. Compared with the conventional catalytic sites on host materials, quantum dots (QDs) with ultrafine particle size (<10 nm) can provide large accessible surface area and strong polarity to restrict the shuttling effect, excellent catalytic effect to enhance the kinetics of redox reactions, as well as abundant lithiophilic nucleation sites to regulate Li deposition. In this review, the intrinsic hurdles of S conversion and Li stripping/plating reactions are first summarized. More importantly, a comprehensive overview is provided of inorganic QDs, in improving the efficiency and stability of Li-S batteries, with the strategies including composition optimization, defect and morphological engineering, design of heterostructures, and so forth. Finally, the prospects and challenges of QDs in Li-S batteries are discussed.
RESUMO
Electrochemical supercapacitors (ECs), characteristic of high power and reasonably high energy densities, have become a versatile solution to various emerging energy applications. This critical review describes some materials science aspects on manganese oxide-based materials for these applications, primarily including the strategic design and fabrication of these electrode materials. Nanostructurization, chemical modification and incorporation with high surface area, conductive nanoarchitectures are the three major strategies in the development of high-performance manganese oxide-based electrodes for EC applications. Numerous works reviewed herein have shown enhanced electrochemical performance in the manganese oxide-based electrode materials. However, many fundamental questions remain unanswered, particularly with respect to characterization and understanding of electron transfer and atomic transport of the electrochemical interface processes within the manganese oxide-based electrodes. In order to fully exploit the potential of manganese oxide-based electrode materials, an unambiguous appreciation of these basic questions and optimization of synthesis parameters and material properties are critical for the further development of EC devices (233 references).
RESUMO
Nitrogen-fixing Anabaena and Chlorella pyrenoidosa algal biotechnology are known as new agricultural inputs due to their characteristics and are widely used in the field of agricultural planting. This paper discusses the application of algal biotechnology based on nitrogen-fixing Anabaena sp. The advantages of algal biotechnology based on nitrogen-fixing Anabaena and Chlorella pyrenoidosa in terms of yield, sugar content, polyunsaturated fatty acid content, and high-quality yield of hawthorn were compared.
Assuntos
Anabaena , Chlorella , Crataegus , Biotecnologia , Humanos , NitrogênioRESUMO
Since the discovery of 2D materials, 2D material nanofiltration (NF) membranes have attracted great attention and are being developed with a tremendously fast pace, due to their energy efficiency and cost effectiveness for water purification. The most attractive aspect for 2D material NF membranes is that, anomalous water and ion permeation phenomena have been constantly observed because of the presence of the severely confined nanocapillaries (<2 nm) in the membrane, leading to its great potential in achieving superior overall performance, e.g., high water flux, high rejection rates of ions, and high resistance to swelling. Hence, fundamental understandings of such water and ion transport behaviors are of great significance for the continuous development of 2D material NF membranes. In this work, the microscopic understandings developed up to date on 2D material NF membranes regarding the abnormal transport phenomena are reviewed, including ultrafast water and ion permeation rates with the magnitude several orders higher than that predicted by conventional diffusion behavior, ion dehydration, ionic Coulomb blockade, ion-ion correlations, etc. The state-of-the-art structural designs for 2D material NF membranes are also reviewed. Discussion and future perspectives are provided highlighting the rational design of 2D material membrane structures in the future.
RESUMO
The soil microbial community plays a vital role in the biogeochemical cycles of bioelements and maintaining healthy soil conditions in agricultural ecosystems. However, how the soil microbial community responds to mitigation measures for continuous cropping obstacles remains largely unknown. Here we examined the impact of quicklime (QL), chemical fungicide (CF), inoculation with earthworm (IE), and a biocontrol agent (BA) on the soil microbial community structure, and the effects toward alleviating crop yield decline in lily. High-throughput sequencing of the 16S rRNA gene from the lily rhizosphere after 3 years of continuous cropping was performed using the Illumina MiSeq platform. The results showed that Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Chloroflexi and Gemmatimonadetes were the dominant bacterial phyla, with a total relative abundance of 86.15-91.59%. On the other hand, Betaproteobacteriales, Rhizobiales, Myxococcales, Gemmatimonadales, Xanthomonadales, and Micropepsales were the dominant orders with a relative abundance of 28.23-37.89%. The hydrogen ion concentration (pH) and available phosphorus (AP) were the key factors affecting the structure and diversity of the bacterial community. The yield of continuous cropping lily with using similar treatments decreased yearly for the leaf blight, but that of IE was significantly (p < 0.05) higher than with the other treatments in the same year, which were 17.9%, 18.54%, and 15.69% higher than that of blank control (CK) over 3 years. In addition, IE significantly (p < 0.05) increased organic matter (OM), available nitrogen (AN), AP, and available potassium (AK) content in the lily rhizosphere soil, optimized the structure and diversity of the rhizosphere bacterial community, and increased the abundance of several beneficial bacterial taxa, including Rhizobiales, Myxococcales, Streptomycetales and Pseudomonadales. Therefore, enriching the number of earthworms in fields could effectively optimize the bacterial community structure of the lily rhizosphere soil, promote the circulation and release in soil nutrients and consequently alleviate the loss of continuous cropping lily yield.
Assuntos
Bactérias/isolamento & purificação , Lilium/crescimento & desenvolvimento , Oligoquetos/fisiologia , Rizosfera , Microbiologia do Solo , Agricultura , Animais , Bactérias/genética , Microbiota , RNA Ribossômico 16S/genéticaRESUMO
Li-substituted, manganese-based, layered oxides NaxLi0.18Mn0.66Co0.17Ni0.17O2+δ (x = 0.54, 0.66, 0.78, and 0.90) have been investigated as one kind of high-performance cathode materials for sodium ion batteries (SIBs). Phase compositions and local structures of the cathode materials with varying sodium content were elucidated by powder X-ray diffraction (PXRD) and atomic-scale high angle annular dark field scanning transmission electron microscope (HAADF-STEM), which demonstrates that a Li-O'3 phase was aroused in P2-type sodium layered oxide matrix forming a Na-P2/Li-O'3 hybrid structure. More importantly, the effect of sodium content on the preferential exposure of (102) and (104) facets and surface morphology of the cathode particles has been comprehensively studied, as well as their relationship with electrochemical performance. It reveals that, in addition to the preferential growth of (102) and (104) facets that has been proved to enhance the capacity and rate performance of the layered oxides, the smooth surface finish of the particles also plays a vital role in deciding the electrochemical performance. The layered sodium cathode material with a sodium content of 0.66 possesses sufficient exposure of (102) and (104) facets and smooth side surface, resulting in the superior capacities under various C rates (187 mAh/g at 0.2 C and 114 mAh/g at 5 C) comparing to the cathode materials with all other sodium contents. The mechanism has also been proposed in this study. These findings presented herein open up new strategies to design high performance sodium layered oxide cathode.
RESUMO
Here, we demonstrate, for the first time, that Co-MoO3-x nanocrystals (NCs) have been synthesized with the assistance of supercritical CO2. Their unique structural features of transition-metal doping and high oxygen vacancy concentrations, lead to synchronous outstanding surface enhanced Raman scattering (SERS) detection and photothermal conversion performances.
RESUMO
Energy-efficient membranes are urgently needed for water desalination and separation due to ever-increasing demand for fresh water. However, it is extremely challenging to increase membrane water flux and simultaneously achieve high rejection rates of cations or organic dyes. Herein, we report a tannic acid (TA) assisted exfoliation method to fabricate TA-modified MoS2 (TAMoS2) nanosheets with high production yield (90⯱â¯5%). The TAMoS2 nanosheets membranes show excellent non-swelling stability in water. It is found that a hybrid membrane with 1â¯wt% of TAMoS2 in MoS2 nanosheets demonstrates overall better performance than pure MoS2 and TAMoS2 membrane. Such a hybrid membrane with a thickness of 5⯵m shows fast water flux at around 32â¯Lâ¯m-2â¯h-1 (LMH) and >97% rejection of various cations under static diffusion mode. Under vacuum-driven filtration condition, the as-prepared hybrid membrane demonstrates ultrafast water flux of 15,000⯱â¯100 L/(m2â¯hâ¯bar) and 99.87⯱â¯0.1% rejection of multiple model organic dyes. To the best of our knowledge, the above performances are superior to those of all MoS2-based membranes reported previously in terms of water flux and ion/dye rejection. This work represents a leap forward towards the practical applications of 2D TAMoS2 membranes in various engineering and environmental areas.
RESUMO
Many challenging issues are encountered along the petroleum production such as the wettability alteration of reservoir solids due to deposition of petroleum materials, stabilization/destabilization of water-in-oil and oil-in-water emulsions and treatment of tailings water. All these problems are essentially driven by the fundamental intermolecular and surface forces among the different components (i.e., water, oil, solid and gas) in the surrounding complex fluid media, and comprehensive understanding of the interactions among these components will pave the way to the development of advanced materials and technologies for improved petroleum production processes. In this work, we have reviewed the quantitative force measurement methods in different petroleum systems by using nanomechanical techniques including surface forces apparatus (SFA) and atomic force microscope (AFM). Interaction forces between petroleum components (e.g., asphaltenes) and mineral solids in both organic solvents and aqueous solutions are reviewed and correlated to the wettability change of the reservoir solids. The recent key progress in quantifying the surface forces of water-in-oil and oil-in-water emulsion drops using AFM drop probe techniques are discussed. The interaction forces of polymer flocculants and colloidal particles are correlated to the performance of tailings water treatment. The current knowledge gap and future perspectives are also presented.
RESUMO
Bacteria, as the key component of soil ecosystems, participate in nutrient cycling and organic matter decomposition. However, how fertilization regime affects the rhizospheric bacterial community of reddish paddy soil remains unclear. Here, a long-term fertilization experiment initiated in 1982 was employed to explore the impacts of different fertilization regimes on physicochemical properties and bacterial communities of reddish paddy rhizospheric soil in Central South China by sequencing the 16S rRNA gene. The results showed that long-term fertilization improved the soil nutrient status and shaped the distinct rhizospheric bacterial communities. Particularly, chemical NPK fertilizers application significantly declined the richness of the bacterial community by 7.32%, whereas the application of manure alone or combined with chemical NPK fertilizers significantly increased the biodiversity of the bacterial community by 1.45%, 1.87% compared with no fertilization, respectively. Moreover, LEfSe indicated that application of chemical NPK fertilizers significantly enhanced the abundances of Verrucomicrobia and Nitrospiraceae, while manure significantly increased the abundances of Deltaproteobacteria and Myxococcales, but the most abundant Actinobacteria and Planctomycetes were detected in the treatment that combined application of manure and chemical NPK fertilizers. Furthermore, canonical correspondence analysis (CCA) and the Mantel test clarified that exchangeable Mg2+ (E-Mg2+), soil organic carbon (SOC) and alkali-hydrolyzable nitrogen (AN) are the key driving factors for shaping bacterial communities in the rhizosphere. Our results suggested that long-term balanced using of manure and chemical fertilizers not only increased organic material pools and nutrient availability but also enhanced the biodiversity of the rhizospheric bacterial community and the abundance of Actinobacteria, which contribute to the sustainable development of agro-ecosystems.
Assuntos
Bactérias/classificação , Fertilizantes/análise , Esterco/análise , Análise de Sequência de DNA/métodos , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , China , DNA Bacteriano/genética , DNA Ribossômico/genética , Filogenia , RNA Ribossômico 16S/genética , Rizosfera , Microbiologia do SoloRESUMO
A facile and scalable polyzwitterion-polydopamine coating strategy has been developed to functionalize substrates and sponges. This approach, for the first time, achieves superior regenerable underwater self-cleaning of stubborn asphaltenes-containing heavy oil fouling without pre-hydration and removal of water residues from heavy oil, with significant implications in many engineering and environmental processes.
RESUMO
The application of an anaerobic baffled reactor (ABR) with four compartments was investigated for the simultaneous removal of carbon and nitrogen from leachate. The nitrified effluent was recycled to compartment 3 of the ABR, thereby avoiding the adverse influence of nitrogen oxides on anaerobic methanogenesis in compartment 1. Nitrified effluent recirculation not only enhanced chemical oxygen demand removal (>95.6%) but also improved the total nitrogen removal efficiency from 12.7% to 67.4% with increasing recirculation ratio from 0.25 to 2. The challenge of insufficient carbon sources for heterotrophic denitrification in compartment 3 with a high recirculation ratio could be overcome by step feeding of leachate. Moreover, various reduced sulfurs (e.g., sulfide, elemental sulfur, and organic sulfur) were involved in nitrate reduction via sulfur-based autotrophic denitrification. The addition of sulfide to compartment 3 further confirmed nitrate reduction using reduced sulfur as an electron donor. The interaction of organic carbon, reduced sulfur, and nitrate in leachate treatment needs further study.