Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(30): e202304121, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226711

RESUMO

The practical implementation of high-voltage lithium-rich manganese oxide (LRMO) cathode is limited by the unanticipated electrolyte decomposition and dissolution of transition metal ions. The present study proposes a bi-affinity electrolyte formulation, wherein the sulfonyl group of ethyl vinyl sulfone (EVS) imparts a highly adsorptive nature to LRMO, while fluoroethylene carbonate (FEC) exhibits a reductive nature towards Li metal. This interface modulation strategy involves the synergistic use of EVS and FEC as additives to form robust interphase layers on the electrode. As-formed S-endorsed but LiF-assisted configuration cathode electrolyte interphase with a more dominant -SO2 - component may promote the interface transport kinetics and prevent the dissolution of transition metal ions. Furthermore, the incorporation of S component into the solid electrolyte interphase and the reduction of its poorly conducting component can effectively inhibit the growth of lithium dendrites. Therefore, a 4.8 V LRMO/Li cell with optimized electrolyte may demonstrate a remarkable retention capacity of 97 % even after undergoing 300 cycles at 1 C.

2.
Small ; 18(44): e2204183, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36148874

RESUMO

The commercialization of lithium-sulfur batteries with ultra-high theoretical energy density is restricted mainly by the notorious polysulfides "shuttle effect" and slow Li2 S redox reaction kinetics. A sulfur host material with high catalytic activity and high conductivity is greatly desired to improve its electrochemical performance. Herein, a sulfur host material, etched cotton@petroleum asphalt carbon (eCPAC), with high specific surface area and excellent catalytic activity, is demonstrated based on a synergistic strategy of introducing intrinsic lattice defects and composite carbon structure. Benefiting from in situ coupling of amorphous and crystalline materials, eCPAC exhibits high conductivity and high sulfur adsorbability. Furthermore, eCPAC containing dual intrinsic defect sites can catalyze the bidirectional sulfur chemistry of Li2 S and capture polysulfides, which is also demonstrated by systematic density functional theory calculations and the potential intermittent titration technique. S@eCPAC/Li cells exhibit excellent cycling stability and rate performance, with an average capacity decay rate of only 0.05% over 1000 cycles at 0.5 C and even 0.03% over 600 cycles at 5 C. Meanwhile, the practicality of eCPAC is proven in high-load batteries and pouch batteries. eCPAC provides a reliable strategy for achieving a win-win situation of capturing polysulfides and accelerating Li2 S redox kinetics.

3.
Animals (Basel) ; 14(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38929332

RESUMO

The intestinal microbiome changes with age, influencing the host's health and immune status. Saccharomyces cerevisiae (S. cerevisiae) positively affects intestinal function in humans and animals, but its effects on gut health and the microbiota profile in aged dogs have not been thoroughly investigated. Twenty aged Labrador Retrievers were divided into two groups: a control group (CON) and a S. cerevisiae group (SC). The experiment lasted for 42 days, with assessments of their intestinal barrier function, inflammatory factors, antioxidant markers, and fecal microbiome composition. The results showed that dietary S. cerevisiae reduced the levels of TNF-α, IL-6, and IL-1ß in the serum (p < 0.05). In the SC group, plasma superoxide dismutase and glutathione peroxidase activities increased, while the level of malondialdehyde significantly decreased (p < 0.05). Additionally, dietary S. cerevisiae lowered the serum zonulin and lipopolysaccharide (LPS) levels (p < 0.05) and inhibited fecal ammonia production (p < 0.05). Furthermore, the microbiota profile showed that dietary S. cerevisiae decreased the abundance of Firmicutes but increased the Chao index, the abundance of Bacteroidetes, and the proportion of Bacteroidetes to Firmicutes (p < 0.05). To conclude, dietary S. cerevisiae can regulate the gut's microbial structure and gut health, which may contribute to the overall health of companion animals as they age.

4.
Adv Mater ; 35(18): e2300982, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36808778

RESUMO

Achieving stable cycling of high-voltage solid-state lithium metal batteries is crucial for next-generation rechargeable batteries with high energy density and high safety. However, the complicated interface problems in both cathode/anode electrodes preclude their practical applications hitherto. Herein, to simultaneously solve such interfacial limitations and obtain sufficient Li+ conductivity in the electrolyte, an ultrathin and adjustable interface is developed at the cathode side through a convenient surface in situ polymerization (SIP), achieving a durable high-voltage tolerance and Li-dendrite inhibition. The integrated interfacial engineering fabricates a homogeneous solid electrolyte with optimized interfacial interactions that contributes to tame the interfacial compatibility between LiNix Coy Mnz O2 and polymeric electrolyte accompanied by anticorrosion of aluminum current collector. Further, the SIP enables a uniform adjustment of solid electrolyte composition by dissolving additives such as Na+ and K+ salts, which presents prominent cyclability in symmetric Li cells (>300 cycles at 5 mA cm-2 ). The assembled LiNi0.8 Co0.1 Mn0.1 O2 (4.3 V)||Li batteries show excellent cycle life with high Coulombic efficiencies (>99%). This SIP strategy is also investigated and verified in sodium metal batteries. It opens a new frontier for solid electrolytes toward high-voltage and high-energy metal battery technologies.

5.
Front Cell Dev Biol ; 11: 1171047, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745303

RESUMO

Introduction: Despite many recent emerging therapeutic modalities that have prolonged the survival of melanoma patients, the prognosis of melanoma remains discouraging, and further understanding of the mechanisms underlying melanoma progression is needed. Melanoma patients often have multiple genetic mutations, with BRAF mutations being the most common. In this study, public databases were exploited to explore a potential therapeutic target for BRAF-mutated melanoma. Methods: In this study, we analyzed differentially expressed genes (DEGs) in normal tissues and melanomas, Braf wild-type and Braf mutant melanomas using information from TCGA databases and the GEO database. Subsequently, we analyzed the differential expression of CYTL1 in various tumor tissues and its effect on melanoma prognosis, and resolved the mutation status of CYTL1 and its related signalling pathways. By knocking down CYTL1 in melanoma cells, the effects of CYTL1 on melanoma cell proliferation, migration and invasion were further examined by CCK8 assay, Transwell assay and cell migration assay. Results: 24 overlapping genes were identified by analyzing DEGs common to melanoma and normal tissue, BRAF-mutated and BRAF wild-type melanoma. Among them, CYTL1 was highly expressed in melanoma, especially in BRAF-mutated melanoma, and the high expression of CYTL1 was associated with epithelial-mesenchymal transition (EMT), cell cycle, and cellular response to UV. In melanoma patients, especially BRAF-mutated melanoma patients, clinical studies showed a positive correlation between increased CYTL1 expression and shorter overall survival (OS) and disease-free survival (DFS). In vitro experiments further confirmed that the knockdown of CYTL1 significantly inhibited the migration and invasive ability of melanoma cells. Conclusion: CYTL1 is a valuable prognostic biomarker and a potentially effective therapeutic target in melanoma, especially BRAF-mutated melanoma.

6.
Chem Asian J ; 17(21): e202200746, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36031710

RESUMO

Although GPE still has the risk of shuttling due to the incomplete removal of liquid electrolytes compared to SPE, which has the most promise of eliminating polysulfide shuttling, researchers have made abundant efforts to eliminate as much of the polysulfide shuttling effect as possible while retaining the unique advantages of GPE. For example, physical barrier to polysulfides by improving the pore size of GPE or fabricating multidimensional structures by different preparation methods. Further chemical adsorption of polysulfides by adding nanofillers to increase polar sites to create polar-polar interactions with polysulfides or to create Lewis acid-base interactions. However, although chemical adsorption can indeed highly immobilize polysulfides, it still brings disadvantages such as loss of active material. Therefore, other researchers have employed GPE with ion-selective permeability that has electrostatic repulsive force or steric hindrance to polysulfides to better inhibit polysulfide shuttling. However, modifying only the cathode side is not enough to enhance this overall properties of Li-S cells. These problems of poor Li+ transport, lithium dendrite growth, and poor SEI due to uneven lithium ion deposit on Li anode side still affect the overall performance of Li-S cells. Therefore, a GPE to improve these problems on the Li anode side is summarized below. Compared with an all-solid electrolyte, GPE, which has a partially liquid electrolyte, clearly has advantages such as strong interfacial contact, good anode interface compatibility, and high flexibility. However, it is still not comparable to the ionic conductivity, etc. of pure liquid electrolyte only. Therefore, the problems on the lithium metal anode side are mainly focused on the lithium ion transport problems and the problems of lithium dendrite growth and inhomogeneous SEI at the lithium anode interface. Facing the problems in these two aspects, researchers have given many improvement solutions respectively. For the lithium ion transport problem, researchers have instead provided pathways for lithium ion transport by adding amorphous nanofibers or nanofillers to reduce the crystallinity of the polymer and improve the ionic conductivity. Alternatively, the migration number of lithium ions can be increased by limiting the anions in the electrolyte. As for the interfacial problems of lithium anodes, researchers have effectively suppressed the growth of lithium dendrites or inhomogeneous lithium plating/stripping phenomena mainly by adding nanofillers to increase the mechanical strength of GPE or by participating in the generation of SEI.


Assuntos
Lítio , Polímeros , Lítio/química , Polímeros/química , Eletrólitos/química , Eletrodos , Íons/química , Enxofre , Bases de Lewis
7.
Toxicol Lett ; 367: 76-87, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35914675

RESUMO

Antipsychotic drugs represent a class of lysosomotropic drugs widely used in clinical practice. However, the hepatotoxicity of these drugs has been reported in recent years. Therefore, understanding the changes in cellular homeostasis mediated by these drugs is of great significance for revealing the true mechanisms underlying hepatotoxicity. Perphenazine is a classical antipsychotic drug that can reportedly induce extrapyramidal and sympatholytic side effects. The present research focuses on the toxicity effect of perphenazine on normal human hepatocytes. To assess the hepatotoxicity of continuous administration of perphenazine and investigate potential mechanisms related to apoptosis, human normal L02 hepatocytes were exposed to 10-40 µM perphenazine in vitro. The results showed that perphenazine inhibited cell viability in a concentration and time-dependent manner. Furthermore, 30 µM perphenazine induced intense lysosome vacuolation, impaired lysosomal membrane, and induced lysosomal membrane permeabilization (LMP), ultimately triggering lysosomal cell death in L02 cells. Knockdown cathepsin D(CTSD) also ameliorated perphenazine-induced liver injury via the inhibition of LMP. In vivo, ICR mice received intragastric administration of 10-180 mg/kg B.W. perphenazine every other day for 21 days. 180 mg/kg perphenazine significantly increased histological injury and aminotransferases compared with control. Taken together, our findings suggest that perphenazine can trigger hepatotoxicity through lysosome disruption both in vitro and in vivo.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Perfenazina , Animais , Apoptose , Doença Hepática Induzida por Substâncias e Drogas/patologia , Humanos , Lisossomos , Camundongos , Camundongos Endogâmicos ICR , Perfenazina/metabolismo , Perfenazina/toxicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa