Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 22(4): e3002623, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38687807

RESUMO

How the activities of large neural populations are integrated in the brain to ensure accurate perception and behavior remains a central problem in systems neuroscience. Here, we investigated population coding of naturalistic self-motion by neurons within early vestibular pathways in rhesus macaques (Macacca mulatta). While vestibular neurons displayed similar dynamic tuning to self-motion, inspection of their spike trains revealed significant heterogeneity. Further analysis revealed that, during natural but not artificial stimulation, heterogeneity resulted primarily from variability across neurons as opposed to trial-to-trial variability. Interestingly, vestibular neurons displayed different correlation structures during naturalistic and artificial self-motion. Specifically, while correlations due to the stimulus (i.e., signal correlations) did not differ, correlations between the trial-to-trial variabilities of neural responses (i.e., noise correlations) were instead significantly positive during naturalistic but not artificial stimulation. Using computational modeling, we show that positive noise correlations during naturalistic stimulation benefits information transmission by heterogeneous vestibular neural populations. Taken together, our results provide evidence that neurons within early vestibular pathways are adapted to the statistics of natural self-motion stimuli at the population level. We suggest that similar adaptations will be found in other systems and species.


Assuntos
Macaca mulatta , Percepção de Movimento , Neurônios , Vestíbulo do Labirinto , Animais , Macaca mulatta/fisiologia , Neurônios/fisiologia , Vestíbulo do Labirinto/fisiologia , Percepção de Movimento/fisiologia , Potenciais de Ação/fisiologia , Masculino , Adaptação Fisiológica/fisiologia , Modelos Neurológicos
2.
Nat Rev Neurosci ; 21(10): 524-534, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32879507

RESUMO

The first issue of Nature Reviews Neuroscience was published 20 years ago, in 2000. To mark this anniversary, in this Viewpoint article we asked a selection of researchers from across the field who have authored pieces published in the journal in recent years for their thoughts on notable and interesting developments in neuroscience, and particularly in their areas of the field, over the past two decades. They also provide some thoughts on current lines of research and questions that excite them.


Assuntos
Neurociências/história , História do Século XXI , Humanos
3.
PLoS Biol ; 20(9): e3001798, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36103550

RESUMO

Sensory pathways provide complex and multifaceted information to the brain. Recent advances have created new opportunities for applying our understanding of the brain to sensory prothesis development. Yet complex sensor physiology, limited numbers of electrodes, and nonspecific stimulation have proven to be a challenge for many sensory systems. In contrast, the vestibular system is uniquely suited for prosthesis development. Its peripheral anatomy allows site-specific stimulation of 3 separate sensory organs that encode distinct directions of head motion. Accordingly, here, we investigated whether implementing natural encoding strategies improves vestibular prosthesis performance. The eye movements produced by the vestibulo-ocular reflex (VOR), which plays an essential role in maintaining visual stability, were measured to quantify performance. Overall, implementing the natural tuning dynamics of vestibular afferents produced more temporally accurate VOR eye movements. Exploration of the parameter space further revealed that more dynamic tunings were not beneficial due to saturation and unnatural phase advances. Trends were comparable for stimulation encoding virtual versus physical head rotations, with gains enhanced in the latter case. Finally, using computational methods, we found that the same simple model explained the eye movements evoked by sinusoidal and transient stimulation and that a stimulation efficacy substantially less than 100% could account for our results. Taken together, our results establish that prosthesis encodings that incorporate naturalistic afferent dynamics and account for activation efficacy are well suited for restoration of gaze stability. More generally, these results emphasize the benefits of leveraging the brain's endogenous coding strategies in prosthesis development to improve functional outcomes.


Assuntos
Membros Artificiais , Vestíbulo do Labirinto , Animais , Movimentos Oculares , Macaca mulatta , Reflexo Vestíbulo-Ocular/fisiologia , Vestíbulo do Labirinto/fisiologia
4.
J Neurosci ; 43(13): 2326-2337, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36801822

RESUMO

To maintain stable posture of the head and body during our everyday activities, the brain integrates information across multiple sensory systems. Here, we examined how the primate vestibular system, independently and in combination with visual sensory input, contributes to the sensorimotor control of head posture across the range of dynamic motion experienced during daily life. We recorded activity of single motor units in the splenius capitis and sternocleidomastoid muscles in rhesus monkeys during yaw rotations spanning the physiological range of self-motion (up to 20 Hz) in darkness. Splenius capitis motor unit responses continued to increase with frequency up to 16 Hz in normal animals, and were strikingly absent following bilateral peripheral vestibular loss. To determine whether visual information modulated these vestibular-driven neck muscle responses, we experimentally controlled the correspondence between visual and vestibular cues of self-motion. Surprisingly, visual information did not influence motor unit responses in normal animals, nor did it substitute for absent vestibular feedback following bilateral peripheral vestibular loss. A comparison of muscle activity evoked by broadband versus sinusoidal head motion further revealed that low-frequency responses were attenuated when low- and high-frequency self-motion were experienced concurrently. Finally, we found that vestibular-evoked responses were enhanced by increased autonomic arousal, quantified via pupil size. Together, our findings directly establish the vestibular system's contribution to the sensorimotor control of head posture across the dynamic motion range experienced during everyday activities, as well as how vestibular, visual, and autonomic inputs are integrated for postural control.SIGNIFICANCE STATEMENT Our sensory systems enable us to maintain control of our posture and balance as we move through the world. Notably, the vestibular system senses motion of the head and sends motor commands, via vestibulospinal pathways, to axial and limb muscles to stabilize posture. By recording the activity of single motor units, here we show, for the first time, that the vestibular system contributes to the sensorimotor control of head posture across the dynamic motion range experienced during everyday activities. Our results further establish how vestibular, autonomic, and visual inputs are integrated for postural control. This information is essential for understanding both the mechanisms underlying the control of posture and balance, and the impact of the loss of sensory function.


Assuntos
Percepção de Movimento , Vestíbulo do Labirinto , Animais , Músculos do Pescoço/fisiologia , Vestíbulo do Labirinto/fisiologia , Músculo Esquelético , Primatas , Percepção de Movimento/fisiologia , Equilíbrio Postural/fisiologia
5.
J Neurosci ; 43(11): 1905-1919, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36732070

RESUMO

Noninvasive electrical stimulation of the vestibular system in humans has become an increasingly popular tool with a broad range of research and clinical applications. However, common assumptions regarding the neural mechanisms that underlie the activation of central vestibular pathways through such stimulation, known as galvanic vestibular stimulation (GVS), have not been directly tested. Here, we show that GVS is encoded by VIIIth nerve vestibular afferents with nonlinear dynamics that differ markedly from those predicted by current models. GVS produced asymmetric activation of both semicircular canal and otolith afferents to the onset versus offset and cathode versus anode of applied current, that in turn produced asymmetric eye movement responses in three awake-behaving male monkeys. Additionally, using computational methods, we demonstrate that the experimentally observed nonlinear neural response dynamics lead to an unexpected directional bias in the net population response when the information from both vestibular nerves is centrally integrated. Together our findings reveal the neural basis by which GVS activates the vestibular system, establish that neural response dynamics differ markedly from current predictions, and advance our mechanistic understanding of how asymmetric activation of the peripheral vestibular system alters vestibular function. We suggest that such nonlinear encoding is a general feature of neural processing that will be common across different noninvasive electrical stimulation approaches.SIGNIFICANCE STATEMENT Here, we show that the application of noninvasive electrical currents to the vestibular system (GVS) induces more complex responses than commonly assumed. We recorded vestibular afferent activity in macaque monkeys exposed to GVS using a setup analogous to human studies. GVS evoked notable asymmetries in irregular afferent responses to cathodal versus anodal currents. We developed a nonlinear model explaining these GVS-evoked afferent responses. Our model predicts that GVS induces directional biases in centrally integrated head motion signals and establishes electrical stimuli that recreate physiologically plausible sensations of motion. Altogether, our findings provide new insights into how GVS activates the vestibular system, which will be vital to advancing new clinical and biomedical applications.


Assuntos
Movimentos Oculares , Vestíbulo do Labirinto , Animais , Masculino , Humanos , Vestíbulo do Labirinto/fisiologia , Canais Semicirculares/fisiologia , Primatas , Sensação , Estimulação Elétrica/métodos
6.
Curr Opin Neurol ; 37(1): 40-51, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37889571

RESUMO

PURPOSE OF REVIEW: Electrical stimulation of the peripheral and central vestibular system using noninvasive (galvanic vestibular stimulation, GVS) or invasive (intracranial electrical brain stimulation, iEBS) approaches have a long history of use in studying self-motion perception and balance control. The aim of this review is to summarize recent electrophysiological studies of the effects of GVS, and functional mapping of the central vestibular system using iEBS in awake patients. RECENT FINDINGS: The use of GVS has become increasingly common in the assessment and treatment of a wide range of clinical disorders including vestibulopathy and Parkinson's disease. The results of recent single unit recording studies have provided new insight into the neural mechanisms underlying GVS-evoked improvements in perceptual and motor responses. Furthermore, the application of iEBS in patients with epilepsy or during awake brain surgery has provided causal evidence of vestibular information processing in mostly the middle cingulate cortex, posterior insula, inferior parietal lobule, amygdala, precuneus, and superior temporal gyrus. SUMMARY: Recent studies have established that GVS evokes robust and parallel activation of both canal and otolith afferents that is significantly different from that evoked by natural head motion stimulation. Furthermore, there is evidence that GVS can induce beneficial neural plasticity in the central pathways of patients with vestibular loss. In addition, iEBS studies highlighted an underestimated contribution of areas in the medial part of the cerebral hemispheres to the cortical vestibular network.


Assuntos
Vestíbulo do Labirinto , Humanos , Lobo Temporal , Encéfalo , Técnicas Estereotáxicas , Estimulação Elétrica/métodos
7.
Nat Rev Neurosci ; 20(6): 346-363, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30914780

RESUMO

How the brain computes accurate estimates of our self-motion relative to the world and our orientation relative to gravity in order to ensure accurate perception and motor control is a fundamental neuroscientific question. Recent experiments have revealed that the vestibular system encodes this information during everyday activities using pathway-specific neural representations. Furthermore, new findings have established that vestibular signals are selectively combined with extravestibular information at the earliest stages of central vestibular processing in a manner that depends on the current behavioural goal. These findings have important implications for our understanding of the brain mechanisms that ensure accurate perception and behaviour during everyday activities and for our understanding of disorders of vestibular processing.


Assuntos
Percepção de Movimento/fisiologia , Movimento/fisiologia , Percepção Espacial/fisiologia , Vestíbulo do Labirinto/fisiologia , Animais , Humanos , Vias Neurais/fisiologia
8.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34475203

RESUMO

A prevailing view is that Weber's law constitutes a fundamental principle of perception. This widely accepted psychophysical law states that the minimal change in a given stimulus that can be perceived increases proportionally with amplitude and has been observed across systems and species in hundreds of studies. Importantly, however, Weber's law is actually an oversimplification. Notably, there exist violations of Weber's law that have been consistently observed across sensory modalities. Specifically, perceptual performance is better than that predicted from Weber's law for the higher stimulus amplitudes commonly found in natural sensory stimuli. To date, the neural mechanisms mediating such violations of Weber's law in the form of improved perceptual performance remain unknown. Here, we recorded from vestibular thalamocortical neurons in rhesus monkeys during self-motion stimulation. Strikingly, we found that neural discrimination thresholds initially increased but saturated for higher stimulus amplitudes, thereby causing the improved neural discrimination performance required to explain perception. Theory predicts that stimulus-dependent neural variability and/or response nonlinearities will determine discrimination threshold values. Using computational methods, we thus investigated the mechanisms mediating this improved performance. We found that the structure of neural variability, which initially increased but saturated for higher amplitudes, caused improved discrimination performance rather than response nonlinearities. Taken together, our results reveal the neural basis for violations of Weber's law and further provide insight as to how variability contributes to the adaptive encoding of natural stimuli with continually varying statistics.


Assuntos
Percepção de Movimento/fisiologia , Células Receptoras Sensoriais/metabolismo , Animais , Feminino , Macaca mulatta , Masculino , Movimento (Física) , Neurônios , Percepção/fisiologia , Psicofísica , Potenciais Evocados Miogênicos Vestibulares/fisiologia , Vestíbulo do Labirinto
9.
J Neuroeng Rehabil ; 19(1): 120, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352393

RESUMO

BACKGROUND: Balance stabilization exercises are often prescribed to facilitate compensation in individuals with vestibular schwannoma (VS). However, both the assessment and prescription of these exercises are reliant on clinical observations and expert opinion rather than on quantitative evidence. The aim of this study was to quantify head motion kinematics in individuals with vestibular loss while they performed commonly prescribed balance stability exercises. METHODS: Using inertial measurement units, head movements of individuals with vestibular schwannoma were measured before and after surgical deafferentation and compared with age-matched controls. RESULTS: We found that individuals with vestibular schwannoma experienced more variable head motion compared to healthy controls both pre- and postoperatively, particularly in absence of visual input, but that there was little difference between preoperative and postoperative kinematic measurements for our vestibular schwannoma group. We further found correlations between head motion kinematic measures during balance exercises, performed in the absence of visual input, and multiple clinical measurements for preoperative VS subjects. Subjects with higher head motion variability also had worse DVA scores, moved more slowly during the Timed up and Go and gait speed tests, and had lower scores on the functional gait assessment. In contrast, we did not find strong correlations between clinical measures and postoperative head kinematics for the same VS subjects. CONCLUSIONS: Our data suggest that further development of such metrics based on the quantification of head motion has merit for the assessment and prescription of balance exercises, as demonstrated by the calculation of a "kinematic score" for identifying the most informative balance exercise (i.e., "Standing on foam eyes closed").


Assuntos
Neuroma Acústico , Doenças Vestibulares , Humanos , Neuroma Acústico/cirurgia , Movimentos da Cabeça , Fenômenos Biomecânicos , Equilíbrio Postural , Terapia por Exercício
10.
J Neurosci ; 40(9): 1874-1887, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-31959700

RESUMO

The vestibulocollic reflex is a compensatory response that stabilizes the head in space. During everyday activities, this stabilizing response is evoked by head movements that typically span frequencies from 0 to 30 Hz. Transient head impacts, however, can elicit head movements with frequency content up to 300-400 Hz, raising the question whether vestibular pathways contribute to head stabilization at such high frequencies. Here, we first established that electrical vestibular stimulation modulates human neck motor unit (MU) activity at sinusoidal frequencies up to 300 Hz, but that sensitivity increases with frequency up to a low-pass cutoff of ∼70-80 Hz. To examine the neural substrates underlying the low-pass dynamics of vestibulocollic reflexes, we then recorded vestibular afferent responses to the same electrical stimuli in monkeys. Vestibular afferents also responded to electrical stimuli up to 300 Hz, but in contrast to MUs their sensitivity increased with frequency up to the afferent resting firing rate (∼100-150 Hz) and at higher frequencies afferents tended to phase-lock to the vestibular stimulus. This latter nonlinearity, however, was not transmitted to neck motoneurons, which instead showed minimal phase-locking that decreased at frequencies >75 Hz. Similar to human data, we validated that monkey muscle activity also exhibited low-pass filtered vestibulocollic reflex dynamics. Together, our results show that neck MUs are activated by high-frequency signals encoded by primary vestibular afferents, but undergo low-pass filtering at intermediate stages in the vestibulocollic reflex. These high-frequency contributions to vestibular-evoked neck muscle responses could stabilize the head during unexpected head transients.SIGNIFICANCE STATEMENT Vestibular-evoked neck muscle responses rely on accurate encoding and transmission of head movement information to stabilize the head in space. Unexpected transient events, such as head impacts, are likely to push the limits of these neural pathways since their high-frequency features (0-300 Hz) extend beyond the frequency bandwidth of head movements experienced during everyday activities (0-30 Hz). Here, we demonstrate that vestibular primary afferents encode high-frequency stimuli through frequency-dependent increases in sensitivity and phase-locking. When transmitted to neck motoneurons, these signals undergo low-pass filtering that limits neck motoneuron phase-locking in response to stimuli >75 Hz. This study provides insight into the neural dynamics producing vestibulocollic reflexes, which may respond to high-frequency transient events to stabilize the head.


Assuntos
Reflexo Vestíbulo-Ocular/fisiologia , Adulto , Vias Aferentes/fisiologia , Animais , Estimulação Elétrica , Eletromiografia , Fenômenos Eletrofisiológicos/fisiologia , Movimentos da Cabeça/fisiologia , Humanos , Macaca fascicularis , Masculino , Neurônios Motores/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Músculos do Pescoço/inervação , Músculos do Pescoço/fisiologia , Vias Neurais/fisiologia , Adulto Jovem
11.
J Physiol ; 599(8): 2239-2254, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33599981

RESUMO

KEY POINTS: Sensory systems are adapted to the statistical structure of natural stimuli, thereby optimizing neural coding. Head motion during natural activities is first sensed and then processed by central vestibulo-motor pathways to influence subsequent behaviour, thereby establishing a feedback loop. To investigate the role of this vestibular feedback on the statistical structure of the head movements, we compared head movements in patients with unilateral vestibular loss and healthy controls. We show that the loss of vestibular feedback substantially alters the statistical structure of head motion for activities that require rapid online feedback control and predict this change by modelling the effects of increased movement variability. Our findings suggest that, following peripheral vestibular loss, changes in the reliability of the sensory input to central pathways impact the statistical structure of head motion during voluntary behaviours. ABSTRACT: It is widely believed that sensory systems are adapted to optimize neural coding of their natural stimuli. Recent evidence suggests that this is the case for the vestibular system, which senses head movement and contributes to essential functions ranging from the most automatic reflexes to voluntary motor control. During everyday behaviours, head motion is sensed by the vestibular system. In turn, this sensory feedback influences subsequent behaviour, raising the questions of whether and how real-time feedback provided by the vestibular system alters the statistical structure of head movements. We predicted that a reduction in vestibular feedback would alter head movement statistics, particularly for tasks reliant on rapid vestibular feedback. To test this proposal, we recorded six-dimensional head motion in patients with variable degrees of unilateral vestibular loss during standard balance and gait tasks, as well as dynamic self-paced activities. While distributions of linear accelerations and rotational velocities were comparable for patients and age-matched healthy controls, comparison of power spectra revealed significant differences during more dynamic and challenging activities. Specifically, consistent with our prediction, head movement power spectra were significantly altered in patients during two tasks that required rapid online vestibular feedback: active repetitive jumping and walking on foam. Using computational methods, we analysed concurrently measured torso motion and identified increases in head-torso movement variability. Taken together, our results demonstrate that vestibular loss significantly alters head movement statistics and further suggest that increased variability and impaired feedback to internal models required for accurate motor control contribute to the observed changes.


Assuntos
Percepção de Movimento , Vestíbulo do Labirinto , Movimentos da Cabeça , Humanos , Movimento (Física) , Movimento , Reprodutibilidade dos Testes
12.
Cereb Cortex ; 29(1): 305-318, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29190334

RESUMO

Successful interaction with our environment requires that voluntary behaviors be precisely coordinated with our perception of self-motion. The vestibular sensors in the inner ear detect self-motion and in turn send projections via the vestibular nuclei to multiple cortical areas through 2 principal thalamocortical pathways, 1 anterior and 1 posterior. While the anterior pathway has been extensively studied, the role of the posterior pathway is not well understood. Accordingly, here we recorded responses from individual neurons in the ventral posterior lateral thalamus of macaque monkeys during externally applied (passive) and actively generated self-motion. The sensory responses of neurons that robustly encoded passive rotations and translations were canceled during comparable voluntary movement (~80% reduction). Moreover, when both passive and active self-motion were experienced simultaneously, neurons selectively encoded the detailed time course of the passive component. To examine the mechanism underlying the selective elimination of vestibular sensitivity to active motion, we experimentally controlled correspondence between intended and actual head movement. We found that suppression only occurred if the actual sensory consequences of motion matched the motor-based expectation. Together, our findings demonstrate that the posterior thalamocortical vestibular pathway selectively encodes unexpected motion, thereby providing a neural correlate for ensuring perceptual stability during active versus externally generated motion.


Assuntos
Percepção de Movimento/fisiologia , Movimento/fisiologia , Propriocepção/fisiologia , Rotação , Núcleos Ventrais do Tálamo/fisiologia , Animais , Macaca mulatta , Masculino
13.
Proc Natl Acad Sci U S A ; 112(15): 4791-6, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25825717

RESUMO

Understanding how the brain processes sensory information is often complicated by the fact that neurons exhibit trial-to-trial variability in their responses to stimuli. Indeed, the role of variability in sensory coding is still highly debated. Here, we examined how variability influences neural responses to naturalistic stimuli consisting of a fast time-varying waveform (i.e., carrier or first order) whose amplitude (i.e., envelope or second order) varies more slowly. Recordings were made from fish electrosensory and monkey vestibular sensory neurons. In both systems, we show that correlated but not single-neuron activity can provide detailed information about second-order stimulus features. Using a simple mathematical model, we made the strong prediction that such correlation-based coding of envelopes requires neural variability. Strikingly, the performance of correlated activity at predicting the envelope was similarly optimally tuned to a nonzero level of variability in both systems, thereby confirming this prediction. Finally, we show that second-order sensory information can only be decoded if one takes into account joint statistics when combining neural activities. Our results thus show that correlated but not single-neural activity can transmit information about the envelope, that such transmission requires neural variability, and that this information can be decoded. We suggest that envelope coding by correlated activity is a general feature of sensory processing that will be found across species and systems.


Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Simulação por Computador , Órgão Elétrico/citologia , Estimulação Elétrica , Gimnotiformes , Macaca fascicularis , Masculino , Análise de Célula Única/métodos , Nervo Vestibular/citologia
14.
J Physiol ; 595(8): 2751-2766, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28083981

RESUMO

KEY POINTS: In order to understand how the brain's coding strategies are adapted to the statistics of the sensory stimuli experienced during everyday life, the use of animal models is essential. Mice and non-human primates have become common models for furthering our knowledge of the neuronal coding of natural stimuli, but differences in their natural environments and behavioural repertoire may impact optimal coding strategies. Here we investigated the structure and statistics of the vestibular input experienced by mice versus non-human primates during natural behaviours, and found important differences. Our data establish that the structure and statistics of natural signals in non-human primates more closely resemble those observed previously in humans, suggesting similar coding strategies for incoming vestibular input. These results help us understand how the effects of active sensing and biomechanics will differentially shape the statistics of vestibular stimuli across species, and have important implications for sensory coding in other systems. ABSTRACT: It is widely believed that sensory systems are adapted to the statistical structure of natural stimuli, thereby optimizing coding. Recent evidence suggests that this is also the case for the vestibular system, which senses self-motion and in turn contributes to essential brain functions ranging from the most automatic reflexes to spatial perception and motor coordination. However, little is known about the statistics of self-motion stimuli actually experienced by freely moving animals in their natural environments. Accordingly, here we examined the natural self-motion signals experienced by mice and monkeys: two species commonly used to study vestibular neural coding. First, we found that probability distributions for all six dimensions of motion (three rotations, three translations) in both species deviated from normality due to long tails. Interestingly, the power spectra of natural rotational stimuli displayed similar structure for both species and were not well fitted by power laws. This result contrasts with reports that the natural spectra of other sensory modalities (i.e. vision, auditory and tactile) instead show a power-law relationship with frequency, which indicates scale invariance. Analysis of natural translational stimuli revealed important species differences as power spectra deviated from scale invariance for monkeys but not for mice. By comparing our results to previously published data for humans, we found the statistical structure of natural self-motion stimuli in monkeys and humans more closely resemble one another. Our results thus predict that, overall, neural coding strategies used by vestibular pathways to encode natural self-motion stimuli are fundamentally different in rodents and primates.


Assuntos
Movimentos da Cabeça/fisiologia , Núcleos Vestibulares/fisiologia , Vestíbulo do Labirinto/fisiologia , Animais , Macaca fascicularis , Masculino , Camundongos , Camundongos da Linhagem 129 , Especificidade da Espécie
15.
J Neurosci ; 35(10): 4287-95, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25762675

RESUMO

Encoding horizontal eye position in the oculomotor system occurs through temporal integration of eye velocity inputs to produce tonic outputs. The nucleus prepositus is commonly believed to be the "neural integrator" that accomplishes this function through the activity of its ensemble of predominantly burst-tonic neurons. Single-unit characterizations and labeling studies of these neurons have suggested that their collective output is achieved through local feedback loops produced by direct connections between them. If this is the case, then the ensemble of burst-tonic neurons should exhibit correlated activity. To obtain electrophysiological evidence of local interactions between neurons, we simultaneously recorded pairs (n = 29) of burst-tonic neurons in the nucleus prepositus of rhesus macaque monkeys using eight-channel linear microelectrode arrays. We computed the magnitude of synchrony between their spike trains as a function of eye position during ocular fixations and as a function of distance between neurons. Importantly, we found that neurons exhibit unexpected levels of positive synchrony, which is maximal during contralateral fixations and weakest when neurons are located far apart from one another (>300 µm). Together, our results support a role for shared inputs to ipsilateral pairs of burst-tonic neurons in the encoding of eye position in the primate nucleus prepositus.


Assuntos
Potenciais de Ação/fisiologia , Movimentos Oculares , Neurônios Motores/fisiologia , Rede Nervosa/fisiologia , Núcleos Vestibulares/citologia , Núcleos Vestibulares/fisiologia , Animais , Retroalimentação Fisiológica , Feminino , Lateralidade Funcional , Macaca mulatta , Masculino
16.
J Neurosci ; 35(8): 3555-65, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25716854

RESUMO

Traditionally, the neural encoding of vestibular information is studied by applying either passive rotations or translations in isolation. However, natural vestibular stimuli are typically more complex. During everyday life, our self-motion is generally not restricted to one dimension, but rather comprises both rotational and translational motion that will simultaneously stimulate receptors in the semicircular canals and otoliths. In addition, natural self-motion is the result of self-generated and externally generated movements. However, to date, it remains unknown how information about rotational and translational components of self-motion is integrated by vestibular pathways during active and/or passive motion. Accordingly, here, we compared the responses of neurons at the first central stage of vestibular processing to rotation, translation, and combined motion. Recordings were made in alert macaques from neurons in the vestibular nuclei involved in postural control and self-motion perception. In response to passive stimulation, neurons did not combine canal and otolith afferent information linearly. Instead, inputs were subadditively integrated with a weighting that was frequency dependent. Although canal inputs were more heavily weighted at low frequencies, the weighting of otolith input increased with frequency. In response to active stimulation, neuronal modulation was significantly attenuated (∼ 70%) relative to passive stimulation for rotations and translations and even more profoundly attenuated for combined motion due to subadditive input integration. Together, these findings provide insights into neural computations underlying the integration of semicircular canal and otolith inputs required for accurate posture and motor control, as well as perceptual stability, during everyday life.


Assuntos
Movimentos da Cabeça , Membrana dos Otólitos/fisiologia , Canais Semicirculares/fisiologia , Células Receptoras Sensoriais/fisiologia , Núcleos Vestibulares/fisiologia , Potenciais de Ação , Animais , Macaca mulatta , Masculino , Percepção Espacial , Núcleos Vestibulares/citologia
17.
J Neurosci ; 35(14): 5522-36, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25855169

RESUMO

Efficient processing of incoming sensory input is essential for an organism's survival. A growing body of evidence suggests that sensory systems have developed coding strategies that are constrained by the statistics of the natural environment. Consequently, it is necessary to first characterize neural responses to natural stimuli to uncover the coding strategies used by a given sensory system. Here we report for the first time the statistics of vestibular rotational and translational stimuli experienced by rhesus monkeys during natural (e.g., walking, grooming) behaviors. We find that these stimuli can reach intensities as high as 1500 deg/s and 8 G. Recordings from afferents during naturalistic rotational and linear motion further revealed strongly nonlinear responses in the form of rectification and saturation, which could not be accurately predicted by traditional linear models of vestibular processing. Accordingly, we used linear-nonlinear cascade models and found that these could accurately predict responses to naturalistic stimuli. Finally, we tested whether the statistics of natural vestibular signals constrain the neural coding strategies used by peripheral afferents. We found that both irregular otolith and semicircular canal afferents, because of their higher sensitivities, were more optimized for processing natural vestibular stimuli as compared with their regular counterparts. Our results therefore provide the first evidence supporting the hypothesis that the neural coding strategies used by the vestibular system are matched to the statistics of natural stimuli.


Assuntos
Vias Auditivas/fisiologia , Movimentos da Cabeça/fisiologia , Membrana dos Otólitos/fisiologia , Vestíbulo do Labirinto/fisiologia , Potenciais de Ação/fisiologia , Animais , Gravitação , Modelos Lineares , Macaca fascicularis , Masculino , Distribuição Normal , Rotação
18.
J Neurosci ; 34(24): 8347-57, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24920638

RESUMO

It is widely believed that sensory systems are optimized for processing stimuli occurring in the natural environment. However, it remains unknown whether this principle applies to the vestibular system, which contributes to essential brain functions ranging from the most automatic reflexes to spatial perception and motor coordination. Here we quantified, for the first time, the statistics of natural vestibular inputs experienced by freely moving human subjects during typical everyday activities. Although previous studies have found that the power spectra of natural signals across sensory modalities decay as a power law (i.e., as 1/f(α)), we found that this did not apply to natural vestibular stimuli. Instead, power decreased slowly at lower and more rapidly at higher frequencies for all motion dimensions. We further establish that this unique stimulus structure is the result of active motion as well as passive biomechanical filtering occurring before any neural processing. Notably, the transition frequency (i.e., frequency at which power starts to decrease rapidly) was lower when subjects passively experienced sensory stimulation than when they actively controlled stimulation through their own movement. In contrast to signals measured at the head, the spectral content of externally generated (i.e., passive) environmental motion did follow a power law. Specifically, transformations caused by both motor control and biomechanics shape the statistics of natural vestibular stimuli before neural processing. We suggest that the unique structure of natural vestibular stimuli will have important consequences on the neural coding strategies used by this essential sensory system to represent self-motion in everyday life.


Assuntos
Percepção de Movimento/fisiologia , Movimento (Física) , Propriocepção/fisiologia , Vestíbulo do Labirinto/fisiologia , Adulto , Vias Eferentes/fisiologia , Feminino , Movimentos da Cabeça , Humanos , Masculino , Modelos Biológicos , Estimulação Física , Psicofísica , Reflexo Vestíbulo-Ocular/fisiologia , Análise Espectral , Adulto Jovem
19.
J Neurosci ; 34(31): 10453-8, 2014 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-25080603

RESUMO

The neuroactive peptide calcitonin-gene related peptide (CGRP) is known to act at efferent synapses and their targets in hair cell organs, including the cochlea and lateral line. CGRP is also expressed in vestibular efferent neurons as well as a number of central vestibular neurons. Although CGRP-null (-/-) mice demonstrate a significant reduction in cochlear nerve sound-evoked activity compared with wild-type mice, it is unknown whether and how the loss of CGRP influence vestibular system function. Vestibular function was assessed by quantifying the vestibulo-ocular reflex (VOR) in alert mice. The loss of CGRP in (-/-) mice was associated with a reduction of the VOR gain of ≈50% without a concomitant change in phase. Using immunohistochemistry, we confirmed that, although CGRP staining was absent in the vestibular end-organs of null (-/-) mice, cholinergic staining appeared normal, suggesting that the overall gross development of vestibular efferent innervation was unaltered. We further confirmed that the observed deficit in vestibular function of null (-/-) mice was not the result of nontargeted effects at the level of the extraocular motor neurons and/or their innervation of extraocular muscles. Analysis of the relationship between vestibular quick phase amplitude and peak velocity revealed that extraocular motor function was unchanged, and immunohistochemistry revealed no abnormalities in motor endplates. Together, our findings show that the neurotransmitter CGRP plays a key role in ensuring VOR efficacy.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/deficiência , Reflexo Vestíbulo-Ocular/genética , Análise de Variância , Animais , Toxinas Botulínicas Tipo A/metabolismo , Calbindina 2/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/genética , Colina O-Acetiltransferase/metabolismo , Movimentos Oculares/genética , Feminino , Regulação da Expressão Gênica/genética , Masculino , Camundongos , Camundongos Knockout , Miosina VIIa , Miosinas/metabolismo , Vestíbulo do Labirinto/metabolismo
20.
Cerebellum ; 14(1): 31-4, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25287644

RESUMO

During self-motion, the vestibular system makes essential contributions to postural stability and self-motion perception. To ensure accurate perception and motor control, it is critical to distinguish between vestibular sensory inputs that are the result of externally applied motion (exafference) and that are the result of our own actions (reafference). Indeed, although the vestibular sensors encode vestibular afference and reafference with equal fidelity, neurons at the first central stage of sensory processing selectively encode vestibular exafference. The mechanism underlying this reafferent suppression compares the brain's motor-based expectation of sensory feedback with the actual sensory consequences of voluntary self-motion, effectively computing the sensory prediction error (i.e., exafference). It is generally thought that sensory prediction errors are computed in the cerebellum, yet it has been challenging to explicitly demonstrate this. We have recently addressed this question and found that deep cerebellar nuclei neurons explicitly encode sensory prediction errors during self-motion. Importantly, in everyday life, sensory prediction errors occur in response to changes in the effector or world (muscle strength, load, etc.), as well as in response to externally applied sensory stimulation. Accordingly, we hypothesize that altering the relationship between motor commands and the actual movement parameters will result in the updating in the cerebellum-based computation of exafference. If our hypothesis is correct, under these conditions, neuronal responses should initially be increased--consistent with a sudden increase in the sensory prediction error. Then, over time, as the internal model is updated, response modulation should decrease in parallel with a reduction in sensory prediction error, until vestibular reafference is again suppressed. The finding that the internal model predicting the sensory consequences of motor commands adapts for new relationships would have important implications for understanding how responses to passive stimulation endure despite the cerebellum's ability to learn new relationships between motor commands and sensory feedback.


Assuntos
Cerebelo/fisiologia , Percepção/fisiologia , Desempenho Psicomotor/fisiologia , Animais , Retroalimentação , Haplorrinos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa