Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 23(5): 2473-2483, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33684262

RESUMO

The structure and diversity of all open microbial communities are shaped by individual births, deaths, speciation and immigration events; the precise timings of these events are unknowable and unpredictable. This randomness is manifest as ecological drift in the population dynamics, the importance of which has been a source of debate for decades. There are theoretical reasons to suppose that drift would be imperceptible in large microbial communities, but this is at odds with circumstantial evidence that effects can be seen even in huge, complex communities. To resolve this dichotomy we need to observe dynamics in simple systems where key parameters, like migration, birth and death rates can be directly measured. We monitored the dynamics in the abundance of two genetically modified strains of Escherichia coli, with tuneable growth characteristics, that were mixed and continually fed into 10 identical chemostats. We demonstrated that the effects of demographic (non-environmental) stochasticity are very apparent in the dynamics. However, they do not conform to the most parsimonious and commonly applied mathematical models, where each stochastic event is independent. For these simple models to reproduce the observed dynamics we need to invoke an 'effective community size', which is smaller than the census community size.


Assuntos
Microbiota , Escherichia coli/genética , Modelos Teóricos , Dinâmica Populacional
2.
PLoS Comput Biol ; 15(12): e1007125, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31830032

RESUMO

We present NUFEB (Newcastle University Frontiers in Engineering Biology), a flexible, efficient, and open source software for simulating the 3D dynamics of microbial communities. The tool is based on the Individual-based Modelling (IbM) approach, where microbes are represented as discrete units and their behaviour changes over time due to a variety of processes. This approach allows us to study population behaviours that emerge from the interaction between individuals and their environment. NUFEB is built on top of the classical molecular dynamics simulator LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator), which we extended with IbM features. A wide range of biological, physical and chemical processes are implemented to explicitly model microbial systems, with particular emphasis on biofilms. NUFEB is fully parallelised and allows for the simulation of large numbers of microbes (107 individuals and beyond). The parallelisation is based on a domain decomposition scheme that divides the domain into multiple sub-domains which are distributed to different processors. NUFEB also offers a collection of post-processing routines for the visualisation and analysis of simulation output. In this article, we give an overview of NUFEB's functionalities and implementation details. We provide examples that illustrate the type of microbial systems NUFEB can be used to model and simulate.


Assuntos
Microbiota , Modelos Biológicos , Software , Biofilmes/crescimento & desenvolvimento , Biologia Computacional , Simulação por Computador , Hidrodinâmica , Imageamento Tridimensional , Microbiota/fisiologia
3.
Environ Sci Technol ; 54(6): 3539-3548, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32083474

RESUMO

Anthropogenic nitrogen fixation is essential to sustain a global population of 7.7 billion. However, there has been a long-standing desire to find cheaper and more environmentally friendly alternatives to the Haber-Bosch process. In this study, we developed a new strategy of nitrogen fixation by enriching free-living N2-fixing bacteria (NFB) in reactors fed with low nitrogen wastewater, analogous to those usually found in certain industrial effluents such as paper mills. Our reactors fixed appreciable quantities of nitrogen with a rate of 11.8 mg N L-1 day-1. This rate is comparable to recent "breakthrough" nitrogen-fixing technologies and far higher than observed in low C/N reactors (fed with organic matter and nitrogen). NFB were quantified using quantitative polymerase chain reaction (qPCR) of the nifH (marker gene used to identify biological nitrogen fixation) and 16S rRNA genes. The nifH gene was enriched by a factor of 10 in the nitrogen-fixing reactors (compared to controls) attaining 13% of the bacterial population (1:4.2 copies of nifH to 16S rRNA). The Illumina MiSeq 16S rRNA gene amplicon sequencing of reactors showed that the microbial community was dominated (19%) by Clostridium pasteurianum. We envisage that nitrogen-enriched biomass could potentially be used as a biofertilizer and that the treated wastewater could be released to the environment with very little post-treatment.


Assuntos
Bactérias Fixadoras de Nitrogênio , Nitrogênio , Fixação de Nitrogênio , Filogenia , RNA Ribossômico 16S , Águas Residuárias
4.
Appl Microbiol Biotechnol ; 104(11): 5133-5143, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32248443

RESUMO

Anode potential can affect the degradation pathway of complex substrates in bioelectrochemical systems (BESs), thereby influencing current production and coulombic efficiency. However, the intricacies behind this interplay are poorly understood. This study used glucose as a model substrate to comprehensively investigate the effect of different anode potentials (- 150 mV, 0 mV and + 200 mV) on the relationship between current production, the electrogenic pathway and the abundance of the electrogenic microorganisms involved in batch mode fed BESs. Current production in glucose-acclimatized reactors was a function of the abundance of Geobacteraceae and of the availability of acetate and formate produced by glucose degradation. Current production was increased by high anode potentials during acclimation (0 mV and + 200 mV), likely due to more Geobacteraceae developing. However, this effect was much weaker than a stimulus from an artificial high acetate supply: acetate was the rate-limiting intermediate in these systems. The supply of acetate could not be influenced by anode potential; altering the flow regime, batch time and management of the upstream fermentation processes may be a greater engineering tool in BES. However, these findings suggest that if high current production is the focus, it will be extremely difficult to achieve success with complex waste streams such as domestic wastewater.


Assuntos
Bactérias/metabolismo , Fontes de Energia Bioelétrica , Glucose/metabolismo , Eletrodos , Geobacter/metabolismo , Águas Residuárias/química
5.
Nucleic Acids Res ; 46(D1): D726-D735, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29069476

RESUMO

EBI metagenomics (http://www.ebi.ac.uk/metagenomics) provides a free to use platform for the analysis and archiving of sequence data derived from the microbial populations found in a particular environment. Over the past two years, EBI metagenomics has increased the number of datasets analysed 10-fold. In addition to increased throughput, the underlying analysis pipeline has been overhauled to include both new or updated tools and reference databases. Of particular note is a new workflow for taxonomic assignments that has been extended to include assignments based on both the large and small subunit RNA marker genes and to encompass all cellular micro-organisms. We also describe the addition of metagenomic assembly as a new analysis service. Our pilot studies have produced over 2400 assemblies from datasets in the public domain. From these assemblies, we have produced a searchable, non-redundant protein database of over 50 million sequences. To provide improved access to the data stored within the resource, we have developed a programmatic interface that provides access to the analysis results and associated sample metadata. Finally, we have integrated the results of a series of statistical analyses that provide estimations of diversity and sample comparisons.


Assuntos
Bases de Dados Genéticas , Metagenômica , Microbiota , Algoritmos , Sequência de Bases , Classificação/métodos , Conjuntos de Dados como Assunto , Metagenômica/métodos , RNA Arqueal/genética , RNA Bacteriano/genética , RNA Viral/genética , Ribotipagem , Software , Transcriptoma , Interface Usuário-Computador , Navegador , Fluxo de Trabalho
6.
Water Sci Technol ; 81(1): 71-80, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32293590

RESUMO

Many developing countries, mostly situated in the tropical region, have incorporated a biological nitrogen removal process into their wastewater treatment plants (WWTPs). Existing wastewater characteristic data suggested that the soluble chemical oxygen demand (COD) in tropical wastewater is not sufficient for denitrification. Warm wastewater temperature (30 °C) in the tropical region may accelerate the hydrolysis of particulate settleable solids (PSS) to provide slowly-biodegradable COD (sbCOD) for denitrification. This study aimed to characterize the different fractions of COD in several sources of low COD-to-nitrogen (COD/N) tropical wastewater. We characterized the wastewater samples from six WWTPs in Malaysia for 22 months. We determined the fractions of COD in the wastewater by nitrate uptake rate experiments. The PSS hydrolysis kinetic coefficients were determined at tropical temperature using an oxygen uptake rate experiment. The wastewater samples were low in readily-biodegradable COD (rbCOD), which made up 3-40% of total COD (TCOD). Most of the biodegradable organics were in the form of sbCOD (15-60% of TCOD), which was sufficient for complete denitrification. The PSS hydrolysis rate was two times higher than that at 20 °C. The high PSS hydrolysis rate may provide sufficient sbCOD to achieve effective biological nitrogen removal at WWTPs in the tropical region.


Assuntos
Nitrogênio , Águas Residuárias , Reatores Biológicos , Desnitrificação , Hidrólise , Cinética , Malásia , Oxigênio , Esgotos , Eliminação de Resíduos Líquidos
7.
J Bacteriol ; 201(18)2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31182499

RESUMO

Biofilms occur in a broad range of environments under heterogeneous physicochemical conditions, such as in bioremediation plants, on surfaces of biomedical implants, and in the lungs of cystic fibrosis patients. In these scenarios, biofilms are subjected to shear forces, but the mechanical integrity of these aggregates often prevents their disruption or dispersal. Biofilms' physical robustness is the result of the multiple biopolymers secreted by constituent microbial cells which are also responsible for numerous biological functions. A better understanding of the role of these biopolymers and their response to dynamic forces is therefore crucial for understanding the interplay between biofilm structure and function. In this paper, we review experimental techniques in rheology, which help quantify the viscoelasticity of biofilms, and modeling approaches from soft matter physics that can assist our understanding of the rheological properties. We describe how these methods could be combined with synthetic biology approaches to control and investigate the effects of secreted polymers on the physical properties of biofilms. We argue that without an integrated approach of the three disciplines, the links between genetics, composition, and interaction of matrix biopolymers and the viscoelastic properties of biofilms will be much harder to uncover.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biofilmes/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fenômenos Biomecânicos , Regulação Bacteriana da Expressão Gênica
8.
Appl Environ Microbiol ; 85(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30446554

RESUMO

Oil reservoir souring and associated material integrity challenges are of great concern to the petroleum industry. The bioengineering strategy of nitrate injection has proven successful for controlling souring in some cases, but recent reports indicate increased corrosion in nitrate-treated produced water reinjection facilities. Sulfide-oxidizing, nitrate-reducing bacteria (soNRB) have been suggested to be the cause of such corrosion. Using the model soNRB Sulfurimonas sp. strain CVO obtained from an oil field, we conducted a detailed analysis of soNRB-induced corrosion at initial nitrate-to-sulfide (N/S) ratios relevant to oil field operations. The activity of strain CVO caused severe corrosion rates of up to 0.27 millimeters per year (mm y-1) and up to 60-µm-deep pitting within only 9 days. The highest corrosion during the growth of strain CVO was associated with the production of zero-valent sulfur during sulfide oxidation and the accumulation of nitrite, when initial N/S ratios were high. Abiotic corrosion tests with individual metabolites confirmed biogenic zero-valent sulfur and nitrite as the main causes of corrosion under the experimental conditions. Mackinawite (FeS) deposited on carbon steel surfaces accelerated abiotic reduction of both sulfur and nitrite, exacerbating corrosion. Based on these results, a conceptual model for nitrate-mediated corrosion by soNRB is proposed.IMPORTANCE Ambiguous reports of corrosion problems associated with the injection of nitrate for souring control necessitate a deeper understanding of this frequently applied bioengineering strategy. Sulfide-oxidizing, nitrate-reducing bacteria have been proposed as key culprits, despite the underlying microbial corrosion mechanisms remaining insufficiently understood. This study provides a comprehensive characterization of how individual metabolic intermediates of the microbial nitrogen and sulfur cycles can impact the integrity of carbon steel infrastructure. The results help explain the dramatic increases seen at times in corrosion rates observed during nitrate injection in field and laboratory trials and point to strategies for reducing adverse integrity-related side effects of nitrate-based souring mitigation.


Assuntos
Helicobacteraceae/metabolismo , Nitratos/metabolismo , Sulfetos/metabolismo , Helicobacteraceae/genética , Helicobacteraceae/isolamento & purificação , Oxirredução , Microbiologia do Solo , Sulfetos/análise
9.
Water Sci Technol ; 69(5): 1004-13, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24622549

RESUMO

Two strategies exist for seeding low-temperature anaerobic reactors: the use of specialist psychrophilic biomass or mesophilic bioreactor sludge acclimated to low temperature. We sought to determine the low-temperature limitation of anaerobic sludge from a bioreactor acclimated to UK temperatures (<15 °C). Anaerobic incubation tests using low-strength real domestic wastewater (DWW) and various alternative soluble COD sources were conducted at 4, 8 and 15 °C; methanogenesis and acidogenesis were monitored separately. Production of methane and acetate was observed; decreasing temperature resulted in decreased yields and increased 'start-up' times. At 4 °C methanogenesis not hydrolysis/acidogenesis was rate-limiting. The final methane yields at 4 °C were less than 35% of the theoretical potential whilst at 8 and 15 °C more than 75 and 100% of the theoretical yield was achieved respectively. We propose that the lower temperature limit for DWW treatment with anaerobic bioreactor sludge lies between 8 and 4 °C and that 8 °C is the threshold for reliable operation.


Assuntos
Reatores Biológicos , Temperatura Baixa , Purificação da Água , Ácidos Alcanossulfônicos , Anaerobiose , Metano/metabolismo , Esgotos
10.
Microbiol Spectr ; 12(4): e0371323, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38376204

RESUMO

The oral microbiome plays an important role in protecting oral health. Here, we established a controlled mixed-species in vitro biofilm model and used it to assess the impact of glucose and lactate on the ability of Streptococcus mutans, an acidogenic and aciduric species, to compete with commensal oral bacteria. A chemically defined medium was developed that supported the growth of S. mutans and four common early colonizers of dental plaque: Streptococcus gordonii, Actinomyces oris, Neisseria subflava, and Veillonella parvula. Biofilms containing the early colonizers were developed in a continuous flow bioreactor, exposed to S. mutans, and incubated for up to 7 days. The abundance of bacteria was estimated by quantitative polymerase chain reaction (qPCR). At high glucose and high lactate, the pH in bulk fluid rapidly decreased to approximately 5.2, and S. mutans outgrew other species in biofilms. In low glucose and high lactate, the pH remained above 5.5, and V. parvula was the most abundant species in biofilms. By contrast, in low glucose and low lactate, the pH remained above 6.0 throughout the experiment, and the microbial community in biofilms was relatively balanced. Fluorescence in situ hybridization confirmed that all species were present in the biofilm and the majority of cells were viable using live/dead staining. These data demonstrate that carbon source concentration is critical for microbial homeostasis in model oral biofilms. Furthermore, we established an experimental system that can support the development of computational models to predict transitions to microbial dysbiosis based on metabolic interactions.IMPORTANCEWe developed a controlled (by removing host factor) dynamic system metabolically representative of early colonization of Streptococcus mutans not measurable in vivo. Hypotheses on factors influencing S. mutans colonization, such as community composition and inoculation sequence and the effect of metabolite concentrations, can be tested and used to predict the effect of interventions such as dietary modifications or the use of toothpaste or mouthwash on S. mutans colonization. The defined in vitro model (species and medium) can be simulated in an in silico model to explore more of the parameter space.


Assuntos
Ácido Láctico , Streptococcus mutans , Ácido Láctico/metabolismo , Hibridização in Situ Fluorescente , Glucose/metabolismo , Biofilmes
11.
Sci Total Environ ; 921: 171091, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387566

RESUMO

Denitrifying biofilms, in which autotrophic denitrifiers (AD) and heterotrophic denitrifiers (HD) coexist, play a crucial role in removing nitrate from water or wastewater. However, it is difficult to elucidate the interactions between HD and AD through sequencing-based experimental methods. Here, we developed an individual-based model to describe the interspecies dynamics and priority effects between sulfur-based AD (Thiobacillus denitrificans) and HD (Thauera phenylcarboxya) under different C/N ratios. In test I (coexistence simulation), AD and HD were initially inoculated at a ratio of 1:1. The simulation results showed excellent denitrification performance and a coaggregation pattern of denitrifiers, indicating that cooperation was the predominant interaction at a C/N ratio of 0.25 to 1.5. In test II (invasion simulation), in which only one type of denitrifier was initially inoculated and the other was added at the invasion time, denitrifiers exhibited a stratification pattern in biofilms. When HD invaded AD, the final HD abundance decreased with increasing invasion time, indicating an enhanced priority effect. When AD invaded HD, insufficient organic carbon sources weakened the priority effect by limiting the growth of HD populations. This study reveals the interaction between autotrophic and heterotrophic denitrifiers, providing guidance for optimizing wastewater treatment process.


Assuntos
Reatores Biológicos , Desnitrificação , Processos Autotróficos , Processos Heterotróficos , Águas Residuárias , Nitratos , Nitrogênio
12.
Environ Microbiol ; 15(4): 1216-25, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23240857

RESUMO

The spatial distribution of microbial taxa is determined primarily by physical and chemical environments and by dispersal. In a homogeneous landscape with limited dispersal, the similarity in abundance of taxa in samples declines with separation distance. We present a one-dimensional model for the spatial autocorrelation in abundances arising from immigration from some remote community and dispersal between environmentally similar landscape patches. Spatial correlation in taxa abundances were calculated from biofilms from the beds of two flumes which differed only in their bedform profiles; one flat and the other a periodic sawtooth shape. The hydraulic regime is approximately uniform over the flat bed, whereas the sawtooth induces fast flow over the peaks and recirculation in the troughs. On the flat bed, the correlation decline between samples was reproduced by a model using one biologically reasonable parameter. A decline was apparent in the other flume; however, a better fit was achieved when dispersal was not assumed constant everywhere. However, analysis of finer-resolution data for the heterogeneous flume suggested even this model did not adequately capture the community's complexity. We conclude that hydrodynamics are a strong driver of taxa-abundance patterns in stream biofilms. However, local adaptability must also be considered to build up a complete mechanistic model.


Assuntos
Biofilmes/crescimento & desenvolvimento , Ecossistema , Hidrodinâmica , Interações Microbianas , Modelos Biológicos , Adaptação Biológica , Meio Ambiente
13.
Proc Natl Acad Sci U S A ; 107(35): 15345-50, 2010 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-20705897

RESUMO

It has long been assumed that differences in the relative abundance of taxa in microbial communities reflect differences in environmental conditions. Here we show that in the economically and environmentally important microbial communities in a wastewater treatment plant, the population dynamics are consistent with neutral community assembly, where chance and random immigration play an important and predictable role in shaping the communities. Using dynamic observations, we demonstrate a straightforward calibration of a purely neutral model and a parsimonious method to incorporate environmental influence on the reproduction (or birth) rate of individual taxa. The calibrated model parameters are biologically plausible, with the population turnover and diversity in the heterotrophic community being higher than for the ammonia oxidizing bacteria (AOB) and immigration into AOB community being relatively higher. When environmental factors were incorporated more of the variance in the observations could be explained but immigration and random reproduction and deaths remained the dominant driver in determining the relative abundance of the common taxa. Consequently we suggest that neutral community models should be the foundation of any description of an open biological system.


Assuntos
Algoritmos , Ecossistema , Modelos Biológicos , Esgotos/microbiologia , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Biomassa , DNA Bacteriano/análise , Polimorfismo de Fragmento de Restrição , Dinâmica Populacional , Fatores de Tempo , Microbiologia da Água
14.
Adv Sci (Weinh) ; 10(27): e2207373, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37522628

RESUMO

Biofilms are aggregated bacterial communities structured within an extracellular matrix (ECM). ECM controls biofilm architecture and confers mechanical resistance against shear forces. From a physical perspective, biofilms can be described as colloidal gels, where bacterial cells are analogous to colloidal particles distributed in the polymeric ECM. However, the influence of the ECM in altering the cellular packing fraction (ϕ) and the resulting viscoelastic behavior of biofilm remains unexplored. Using biofilms of Pantoea sp. (WT) and its mutant (ΔUDP), the correlation between biofilm structure and its viscoelastic response is investigated. Experiments show that the reduction of exopolysaccharide production in ΔUDP biofilms corresponds with a seven-fold increase in ϕ, resulting in a colloidal glass-like structure. Consequently, the rheological signatures become altered, with the WT behaving like a weak gel, whilst the ΔUDP displayed a glass-like rheological signature. By co-culturing the two strains, biofilm ϕ is modulated which allows us to explore the structural changes and capture a change in viscoelastic response from a weak to a strong gel, and to a colloidal glass-like state. The results reveal the role of exopolysaccharide in mediating a structural transition in biofilms and demonstrate a correlation between biofilm structure and viscoelastic response.


Assuntos
Biofilmes , Matriz Extracelular , Vidro
15.
Nat Methods ; 6(9): 639-41, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19668203

RESUMO

We present an algorithm, PyroNoise, that clusters the flowgrams of 454 pyrosequencing reads using a distance measure that models sequencing noise. This infers the true sequences in a collection of amplicons. We pyrosequenced a known mixture of microbial 16S rDNA sequences extracted from a lake and found that without noise reduction the number of operational taxonomic units is overestimated but using PyroNoise it can be accurately calculated.


Assuntos
Bactérias/genética , Variação Genética , Análise de Sequência de DNA/métodos , Algoritmos , Modelos Genéticos , Reação em Cadeia da Polimerase , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Software
16.
J Biotechnol ; 351: 30-37, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35523393

RESUMO

Metagenomics sequencing has generated millions of new protein sequences, most of them with unknown functions. A relatively quick first step for function assignment is to use the existing public protein databases and their scanning tools. However, to date these tools are not able to identify all sequence features like conserved motifs or patterns. In this study we evaluated the capability of several protein public databases (e.g., InterPro, PROSITE, ESTHER, pfam, AlphaFold etc) and their scanning tools for identifying lipolytic features in 78 putative cold-adapted bacterial lipase sequences. Novel lipases that can tolerate extreme conditions have great biotechnological importance. We obtained the putative cold-adapted lipolytic sequences from the metagenomic study of anaerobic psychrophilic microbial community treating domestic wastewater at 4 and 15 â„ƒ. Both newer and conventional protein classifiers failed to find lipolytic features for most of the putative lipases. InterProScan predicted lipase family membership for only 18 of the putative lipase sequences. For more than half of them (41 out of 78) InterProScan could not predict any protein family membership, let alone find lipolytic features in them. However, when the Lipase Engineering Database and AlphaFold were used, half of those sequences were classified. Conventional databases like PROSITE could find lipolytic patterns for 9 of the putative lipolytic sequences of which only one was identified by InterProScan as a lipase. Moreover, different scanning tools made different and inconsistent predictions for a certain putative lipase sequence. Even InterProScan, which integrates predictions from 13 protein member databases, did not have a consensus prediction for a certain lipase sequence. Our study shows that there is lack of information in public protein databases about bacterial lipase sequences and this limits their lipolytic feature prediction and biotechnological application. The integration of AlphaFold within the InterPro can improve the lipase identification and classification significantly.


Assuntos
Lipase , Proteínas , Sequência de Aminoácidos , Bactérias/genética , Bactérias/metabolismo , Bases de Dados de Proteínas , Lipase/genética , Lipase/metabolismo , Lipólise , Proteínas/metabolismo
17.
Water Res ; 212: 118115, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35092910

RESUMO

Poor lipid degradation limits low-temperature anaerobic treatment of domestic wastewater even when psychrophiles are used. We combined metagenomics and metaproteomics to find lipolytic bacteria and their potential, and actual, cold-adapted extracellular lipases in anaerobic membrane bioreactors treating domestic wastewater at 4 and 15 °C. Of the 40 recovered putative lipolytic metagenome-assembled genomes (MAGs), only three (Chlorobium, Desulfobacter, and Mycolicibacterium) were common and abundant (relative abundance ≥ 1%) in all reactors. Notably, some MAGs that represented aerobic autotrophs contained lipases. Therefore, we hypothesised that the lipases we found are not always associated with exogenous lipid degradation and can have other roles such as polyhydroxyalkanoates (PHA) accumulation/degradation and interference with the outer membranes of other bacteria. Metaproteomics did not provide sufficient proteome coverage for relatively lower abundant proteins such as lipases though the expression of fadL genes, long-chain fatty acid transporters, was confirmed for four genera (Dechloromonas, Azoarcus, Aeromonas and Sulfurimonas), none of which were recovered as putative lipolytic MAGs. Metaproteomics also confirmed the presence of 15 relatively abundant (≥ 1%) genera in all reactors, of which at least 6 can potentially accumulate lipid/polyhydroxyalkanoates. For most putative lipolytic MAGs, there was no statistically significant correlation between the read abundance and reactor conditions such as temperature, phase (biofilm and bulk liquid), and feed type (treated by ultraviolet light or not). Results obtained by metagenomics and metaproteomics did not confirm each other and extracellular lipases and lipolytic bacteria were not easily identifiable in the anaerobic membrane reactors used in this study. Further work is required to identify the true lipid degraders in these systems.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Anaerobiose , Bactérias Anaeróbias , Reatores Biológicos , Temperatura
18.
Front Microbiol ; 13: 915856, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814661

RESUMO

The growth of microbial mats or "biomats" has been identified as an essential component in the attenuation of pollutants within the soil treatment unit (STU) of conventional on-site wastewater treatment systems (OWTSs). This study aimed to characterize the microbial community which colonizes these niches and to determine the influence of the pre-treatment of raw-domestic wastewater on these communities. This was achieved through a detailed sampling campaign of two OWTSs. At each site, the STU areas were split whereby half received effluent directly from septic tanks, and half received more highly treated effluents from packaged aerobic treatment systems [a coconut husk media filter on one site, and a rotating biodisc contactor (RBC) on the other site]. Effluents from the RBC had a higher level of pre-treatment [~90% Total Organic Carbon (TOC) removal], compared to the media filter (~60% TOC removal). A total of 92 samples were obtained from both STU locations and characterized by 16S rRNA gene sequencing analysis. The fully treated effluent from the RBC resulted in greater microbial community richness and diversity within the STUs compared to the STUs receiving partially treated effluents. The microbial community structure found within the STU receiving fully treated effluents was significantly different from its septic tank, primary effluent counterpart. Moreover, the distance along each STU appears to have a greater impact on the community structure than the depth in each STU. Our findings highlight the spatial variability of diversity, Phylum- and Genus-level taxa, and functional groups within the STUs, which supports the assumption that specialized biomes develop around the application of effluents under different degrees of treatment and distance from the source. This research indicates that the application of pre-treated effluents infers significant changes in the microbial community structure, which in turn has important implications for the functionality of the STU, and consequently the potential risks to public health and the environment.

19.
Appl Environ Microbiol ; 77(21): 7787-96, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21926211

RESUMO

In wastewater treatment plants, nitrifying systems are usually operated with elevated levels of aeration to avoid nitrification failures. This approach contributes significantly to operational costs and the carbon footprint of nitrifying wastewater treatment processes. In this study, we tested the effect of aeration rate on nitrification by correlating ammonia oxidation rates with the structure of the ammonia-oxidizing bacterial (AOB) community and AOB abundance in four parallel continuous-flow reactors operated for 43 days. Two of the reactors were supplied with a constant airflow rate of 0.1 liter/min, while in the other two units the airflow rate was fixed at 4 liters/min. Complete nitrification was achieved in all configurations, though the dissolved oxygen (DO) concentration was only 0.5 ± 0.3 mg/liter in the low-aeration units. The data suggest that efficient performance in the low-DO units resulted from elevated AOB levels in the reactors and/or putative development of a mixotrophic AOB community. Denaturing gel electrophoresis and cloning of AOB 16S rRNA gene fragments followed by sequencing revealed that the AOB community in the low-DO systems was a subset of the community in the high-DO systems. However, in both configurations the dominant species belonged to the Nitrosomonas oligotropha lineage. Overall, the results demonstrated that complete nitrification can be achieved at low aeration in lab-scale reactors. If these findings could be extended to full-scale plants, it would be possible to minimize the operational costs and greenhouse gas emissions without risk of nitrification failure.


Assuntos
Amônia/metabolismo , Nitrificação , Nitrosomonas/classificação , Nitrosomonas/isolamento & purificação , Oxigênio/metabolismo , Microbiologia da Água , Reatores Biológicos/microbiologia , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Eletroforese em Gel de Gradiente Desnaturante , Dados de Sequência Molecular , Nitrosomonas/genética , Nitrosomonas/metabolismo , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Purificação da Água
20.
J Theor Biol ; 276(1): 35-41, 2011 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-21291895

RESUMO

Microbial 'food chains' are fundamentally different from canonical food chains in the sense that the waste products of the organisms on one trophic level are consumed by organisms of the next trophic level rather than the organisms themselves. In the present paper we introduce a generalised model of a two-tiered microbial 'food chain' with feedback inhibition, after applying an appropriate dimensionless transformation, and investigate its stability analytically. We then parameterised the model with consensus values for syntrophic propionate degradation compiled by the IWA Task Group for Mathematical Modelling of Anaerobic Digestion Processes. Consumption of energy for all processes other than growth is called maintenance. In the absence of maintenance and decay the microbial 'food chain' is intrinsically stable, but when decay is included in the description this is not necessarily the case. We point out that this is in analogy to canonical food chains where introduction of maintenance in the description of a stable (equilibrium or limit cycle) predator-prey system generates chaos.


Assuntos
Fenômenos Fisiológicos Bacterianos , Cadeia Alimentar , Modelos Biológicos , Acetatos/metabolismo , Simulação por Computador , Hidrogênio/metabolismo , Propionatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa