Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell ; 84(14): 2682-2697.e6, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38996576

RESUMO

RNA can directly control protein activity in a process called riboregulation; only a few mechanisms of riboregulation have been described in detail, none of which have been characterized on structural grounds. Here, we present a comprehensive structural, functional, and phylogenetic analysis of riboregulation of cytosolic serine hydroxymethyltransferase (SHMT1), the enzyme interconverting serine and glycine in one-carbon metabolism. We have determined the cryoelectron microscopy (cryo-EM) structure of human SHMT1 in its free- and RNA-bound states, and we show that the RNA modulator competes with polyglutamylated folates and acts as an allosteric switch, selectively altering the enzyme's reactivity vs. serine. In addition, we identify the tetrameric assembly and a flap structural motif as key structural elements necessary for binding of RNA to eukaryotic SHMT1. The results presented here suggest that riboregulation may have played a role in evolution of eukaryotic SHMT1 and in compartmentalization of one-carbon metabolism. Our findings provide insights for RNA-based therapeutic strategies targeting this cancer-linked metabolic pathway.


Assuntos
Microscopia Crioeletrônica , Glicina Hidroximetiltransferase , Glicina Hidroximetiltransferase/metabolismo , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/química , Humanos , RNA/metabolismo , RNA/genética , Serina/metabolismo , Regulação Alostérica , Ligação Proteica , Filogenia , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade , Glicina/metabolismo , Glicina/química , Sítios de Ligação
2.
Cell Commun Signal ; 22(1): 104, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331871

RESUMO

Extravasation is a fundamental step in the metastatic journey, where cancer cells exit the bloodstream and breach the endothelial cell barrier to infiltrate target tissues. The tactics cancer cells employ are sophisticated, closely reflecting those used by the immune system for tissue surveillance. Remarkably, tumor cells have been observed to form distinct associations or clusters with immune cells where neutrophils stand out as particularly crucial partners. These interactions are not accidental; they are critical for cancer cells to exploit the immune functions of neutrophils and successfully extravasate. In another strategy, tumor cells mimic the behavior and characteristics of immune cells. They release a suite of inflammatory mediators, which under normal circumstances, guide the processes of endothelium reshaping and facilitate the entry and movement of immune cells within tissues. In this review, we offer a new perspective on the tactics employed by cancer cells to extravasate and infiltrate target tissues. We delve into the myriad mechanisms that tumor cells borrow, adapt, and refine from the immune playbook. Video Abstract.


Assuntos
Células Endoteliais , Neutrófilos , Movimento Celular , Neutrófilos/metabolismo , Células Endoteliais/metabolismo
3.
Pharmaceutics ; 16(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38543296

RESUMO

Chronic lymphocytic leukemia (CLL) is a widespread type of leukemia that predominantly targets B lymphocytes, undermining the balance between cell proliferation and apoptosis. In healthy B cells, miR-15/16, a tandem of microRNAs, functions as a tumor suppressor, curbing the expression of the antiapoptotic B cell lymphoma 2 protein (Bcl-2). Conversely, in CLL patients, a recurring deletion on chromosome 13q14, home to the miR15-a and miR16-1 genes, results in Bcl-2 overexpression, thereby fostering the onset of the pathology. In the present research, a novel approach utilizing humanized ferritin-based nanoparticles was employed to successfully deliver miR15-a and miR-16-1 into MEG01 cells, a model characterized by the classic CLL deletion and overexpression of the human ferritin receptor (TfR1). The loaded miR15-a and miR16-1, housed within modified HumAfFt, were efficiently internalized via the MEG01 cells and properly directed into the cytoplasm. Impressively, the concurrent application of miR15-a and miR16-1 demonstrated a robust capacity to induce apoptosis through the reduction in Bcl-2 expression levels. This technology, employing RNA-loaded ferritin nanoparticles, hints at promising directions in the battle against CLL, bridging the substantial gap left by traditional transfection agents and indicating a pathway that may offer hope for more effective treatments.

4.
Redox Biol ; 73: 103221, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38843768

RESUMO

Brain insulin resistance links the failure of energy metabolism with cognitive decline in both type 2 Diabetes Mellitus (T2D) and Alzheimer's disease (AD), although the molecular changes preceding overt brain insulin resistance remain unexplored. Abnormal biliverdin reductase-A (BVR-A) levels were observed in both T2D and AD and were associated with insulin resistance. Here, we demonstrate that reduced BVR-A levels alter insulin signaling and mitochondrial bioenergetics in the brain. Loss of BVR-A leads to IRS1 hyper-activation but dysregulates Akt-GSK3ß complex in response to insulin, hindering the accumulation of pGSK3ßS9 into the mitochondria. This event impairs oxidative phosphorylation and fosters the activation of the mitochondrial Unfolded Protein Response (UPRmt). Remarkably, we unveil that BVR-A is required to shuttle pGSK3ßS9 into the mitochondria. Our data sheds light on the intricate interplay between insulin signaling and mitochondrial metabolism in the brain unraveling potential targets for mitigating the development of brain insulin resistance and neurodegeneration.


Assuntos
Glicogênio Sintase Quinase 3 beta , Resistência à Insulina , Insulina , Mitocôndrias , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Transdução de Sinais , Glicogênio Sintase Quinase 3 beta/metabolismo , Mitocôndrias/metabolismo , Fosforilação , Animais , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Insulina/metabolismo , Camundongos , Humanos , Encéfalo/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Resposta a Proteínas não Dobradas , Diabetes Mellitus Tipo 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doença de Alzheimer/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa