Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 153(6): 1394-405, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23746849

RESUMO

Drosophila cryptochrome (dCRY) is a FAD-dependent circadian photoreceptor, whereas mammalian cryptochromes (CRY1/2) are integral clock components that repress mCLOCK/mBMAL1-dependent transcription. We report crystal structures of full-length dCRY, a dCRY loop deletion construct, and the photolyase homology region of mouse CRY1 (mCRY1). Our dCRY structures depict Phe534 of the regulatory tail in the same location as the photolesion in DNA-repairing photolyases and reveal that the sulfur loop and tail residue Cys523 plays key roles in the dCRY photoreaction. Our mCRY1 structure visualizes previously characterized mutations, an NLS, and MAPK and AMPK phosphorylation sites. We show that the FAD and antenna chromophore-binding regions, a predicted coiled-coil helix, the C-terminal lid, and charged surfaces are involved in FAD-independent mPER2 and FBXL3 binding and mCLOCK/mBMAL1 transcriptional repression. The structure of a mammalian cryptochrome1 protein may catalyze the development of CRY chemical probes and the design of therapeutic metabolic modulators.


Assuntos
Relógios Circadianos , Criptocromos/química , Proteínas de Drosophila/química , Drosophila/metabolismo , Proteínas do Olho/química , Sequência de Aminoácidos , Animais , Ritmo Circadiano , Criptocromos/genética , Criptocromos/metabolismo , Análise Mutacional de DNA , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Transporte de Elétrons , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Proteínas F-Box/metabolismo , Regulação da Expressão Gênica , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Circadianas Period/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Alinhamento de Sequência , Transcrição Gênica
2.
Nucleic Acids Res ; 52(11): 6441-6458, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38499483

RESUMO

Coronaviruses modify their single-stranded RNA genome with a methylated cap during replication to mimic the eukaryotic mRNAs. The capping process is initiated by several nonstructural proteins (nsp) encoded in the viral genome. The methylation is performed by two methyltransferases, nsp14 and nsp16, while nsp10 acts as a co-factor to both. Additionally, nsp14 carries an exonuclease domain which operates in the proofreading system during RNA replication of the viral genome. Both nsp14 and nsp16 were reported to independently bind nsp10, but the available structural information suggests that the concomitant interaction between these three proteins would be impossible due to steric clashes. Here, we show that nsp14, nsp10, and nsp16 can form a heterotrimer complex upon significant allosteric change. This interaction is expected to encourage the formation of mature capped viral mRNA, modulating nsp14's exonuclease activity, and protecting the viral RNA. Our findings show that nsp14 is amenable to allosteric regulation and may serve as a novel target for therapeutic approaches.


Assuntos
Metiltransferases , RNA Viral , SARS-CoV-2 , Proteínas não Estruturais Virais , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/química , Metiltransferases/metabolismo , Metiltransferases/genética , Metiltransferases/química , Metilação , RNA Viral/metabolismo , RNA Viral/química , RNA Viral/genética , Exorribonucleases/metabolismo , Exorribonucleases/genética , Humanos , Ligação Proteica , Capuzes de RNA/metabolismo , Capuzes de RNA/genética , Regulação Alostérica , COVID-19/virologia , COVID-19/genética , Multimerização Proteica , Replicação Viral/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/química , Proteínas Virais Reguladoras e Acessórias
3.
Cell Commun Signal ; 20(1): 10, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35057808

RESUMO

BACKGROUND: A universal adaptor protein, MyD88, orchestrates the innate immune response by propagating signals from toll-like receptors (TLRs) and interleukin-1 receptor (IL-1R). Receptor activation seeds MyD88 dependent formation of a signal amplifying supramolecular organizing center (SMOC)-the myddosome. Alternatively spliced variant MyD88S, lacking the intermediate domain (ID), exhibits a dominant negative effect silencing the immune response, but the mechanistic understanding is limited. METHODS: Luciferase reporter assay was used to evaluate functionality of MyD88 variants and mutants. The dimerization potential of MyD88 variants and myddosome nucleation process were monitored by co-immunoprecipitation and confocal microscopy. The ID secondary structure was characterized in silico employing I-TASSER server and in vitro using nuclear magnetic resonance (NMR) and circular dichroism (CD). RESULTS: We show that MyD88S is recruited to the nucleating SMOC and inhibits its maturation by interfering with incorporation of additional components. Biophysical analysis suggests that important functional role of ID is not supported by a well-defined secondary structure. Mutagenesis identifies Tyr116 as the only essential residue within ID required for myddosome nucleation and signal propagation (NF-κB activation). CONCLUSIONS: Our results argue that the largely unstructured ID of MyD88 is not only a linker separating toll-interleukin-1 receptor (TIR) homology domain and death domain (DD), but contributes intermolecular interactions pivotal in MyD88-dependent signaling. The dominant negative effect of MyD88S relies on quenching the myddosome nucleation and associated signal transduction. Video abstract.


Assuntos
Quinases Associadas a Receptores de Interleucina-1 , Fator 88 de Diferenciação Mieloide/metabolismo , Linhagem Celular , Humanos , Quinases Associadas a Receptores de Interleucina-1/química , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Estrutura Terciária de Proteína , Receptores de Interleucina-1/química , Receptores de Interleucina-1/metabolismo , Receptores Toll-Like/metabolismo
4.
Horm Behav ; 146: 105265, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36155912

RESUMO

Research has linked hormones to behavioral outcomes in intricate ways, often moderated by psychological dispositions. The associations between testosterone and antisocial or prosocial outcomes also depend on dispositions relevant to status and dominance. In two studies (N1 = 68, N2 = 83), we investigated whether endogenous testosterone, measured in saliva, and narcissism, a psychological variable highly relevant to status motivation, interactively predicted men's preferences regarding resource allocation. Narcissism moderated the links between testosterone and social value orientation: among low narcissists testosterone negatively predicted generosity in resource allocation and probability of endorsing a prosocial (vs. pro-self) value orientation, whereas among high narcissists testosterone tended to positively predict generosity and the probability of endorsing a prosocial (vs. pro-self) value orientation. We discuss these results as examples of calibrating effects of testosterone on human behavior, serving to increase and maintain social status. We advocate the relevance of psychological dispositions, alongside situations, when examining the role of T in social outcomes.


Assuntos
Narcisismo , Testosterona , Masculino , Humanos , Testosterona/farmacologia , Comportamento Social , Saliva , Personalidade
5.
J Pers ; 89(5): 1062-1080, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33829496

RESUMO

OBJECTIVES: We aimed to introduce, validate, and showcase the utility of a new construct: communal collective narcissism. METHOD: We conducted four studies, in which we developed a new scale for communal collective narcissism (Study 1, N = 856), tested the construct's unique predictions (Study 2, N = 276), examined its social relevance (Study 3, N = 250), and assessed its implications for intergroup outcomes (Study 4, N = 664). RESULTS: In Study 1, we verified the structural soundness of the Communal Collective Narcissism Inventory. In Study 2, we obtained evidence for a defining feature of communal collective narcissism, namely, that it predicts communal, but not agentic, ingroup-enhancement. In Study 3, we illustrated the social relevance of communal collective narcissism. Communal collective narcissists derogated outgroup members, if those outgroups threatened the ingroup and the threat targeted the ingroup's communion. Finally, in Study 4, we showed that communal collective narcissism predicts intergroup outcomes in the communal domain (e.g., humanitarian aid) better than agentic collective narcissism does, whereas agentic collective narcissism predicts intergroup outcomes in the agentic domain (i.e., preferences for military aggression) better than communal collective narcissism does. CONCLUSIONS: The construct of communal collective narcissism is conceptually and empirically distinct from classic (i.e., agentic) collective narcissism.


Assuntos
Agressão , Narcisismo , Humanos
6.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34445786

RESUMO

Diabetes, and several diseases related to diabetes, including cancer, cardiovascular diseases and neurological disorders, represent one of the major ongoing threats to human life, becoming a true pandemic of the 21st century. Current treatment strategies for diabetes mainly involve promoting ß-cell differentiation, and one of the most widely studied targets for ß-cell regeneration is DYRK1A kinase, a member of the DYRK family. DYRK1A has been characterized as a key regulator of cell growth, differentiation, and signal transduction in various organisms, while further roles and substrates are the subjects of extensive investigation. The targets of interest in this review are implicated in the regulation of ß-cells through DYRK1A inhibition-through driving their transition from highly inefficient and death-prone populations into efficient and sufficient precursors of islet regeneration. Increasing evidence for the role of DYRK1A in diabetes progression and ß-cell proliferation expands the potential for pharmaceutical applications of DYRK1A inhibitors. The variety of new compounds and binding modes, determined by crystal structure and in vitro studies, may lead to new strategies for diabetes treatment. This review provides recent insights into the initial self-activation of DYRK1A by tyrosine autophosphorylation. Moreover, the importance of developing novel DYRK1A inhibitors and their implications for the treatment of diabetes are thoroughly discussed. The evolving understanding of DYRK kinase structure and function and emerging high-throughput screening technologies have been described. As a final point of this work, we intend to promote the term "diabetic kinome" as part of scientific terminology to emphasize the role of the synergistic action of multiple kinases in governing the molecular processes that underlie this particular group of diseases.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Diabetes Mellitus/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Quinases Dyrk
7.
J Pers ; 88(4): 703-718, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31654584

RESUMO

OBJECTIVE: The current research comprehensively examined how grandiose and vulnerable narcissism are linked to intelligence and intelligence-related beliefs and emotions. METHOD: In four studies (total N = 1,141), we tested the associations between both forms of narcissism, subjectively and objectively assessed intelligence, basic personality traits, test-related stress, beliefs about intelligence, and well-being. RESULTS: Both forms of narcissism (grandiose and vulnerable) were unrelated to objective intelligence. Grandiose narcissism was associated with high self-perceived intelligence (Studies 1-3) and explained more variance in self-perceived intelligence than objective intelligence and the Big Five personality traits. It was correlated with reduced distress in the context of IQ testing and low engagement in cognitive performance (Study 2). Individuals with high grandiose narcissism based their well-being (Study 3) partly on intelligence and considered intelligence important for success in different life domains, especially for social relations (Study 4). Vulnerable narcissism was unrelated to self-perceived intelligence (Studies 1-3) and went along with increased distress in the context of IQ testing (Study 2). CONCLUSIONS: The results indicate that the topic of intelligence is of key importance for people with high grandiose narcissism psychological functioning and it also has some relevance for individuals with high vulnerable narcissism.


Assuntos
Inteligência , Narcisismo , Personalidade/fisiologia , Autoavaliação (Psicologia) , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
8.
J Clin Psychol ; 74(6): 1034-1052, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29380877

RESUMO

OBJECTIVE: The Mental Health Continuum-Short Form (MHC-SF) is a brief scale measuring positive human functioning. The study aimed to examine the factor structure and to explore the cross-cultural utility of the MHC-SF using bifactor models and exploratory structural equation modelling. METHOD: Using multigroup confirmatory analysis (MGCFA) we examined the measurement invariance of the MHC-SF in 38 countries (university students, N = 8,066; 61.73% women, mean age 21.55 years). RESULTS: MGCFA supported the cross-cultural replicability of a bifactor structure and a metric level of invariance between student samples. The average proportion of variance explained by the general factor was high (ECV = .66), suggesting that the three aspects of mental health (emotional, social, and psychological well-being) can be treated as a single dimension of well-being. CONCLUSION: The metric level of invariance offers the possibility of comparing correlates and predictors of positive mental functioning across countries; however, the comparison of the levels of mental health across countries is not possible due to lack of scalar invariance. Our study has preliminary character and could serve as an initial assessment of the structure of the MHC-SF across different cultural settings. Further studies on general populations are required for extending our findings.


Assuntos
Saúde Global/estatística & dados numéricos , Saúde Mental/estatística & dados numéricos , Satisfação Pessoal , Escalas de Graduação Psiquiátrica/normas , Psicometria/normas , Adolescente , Adulto , Comparação Transcultural , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Psicometria/instrumentação , Adulto Jovem
9.
Circ Res ; 114(1): 41-55, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24170267

RESUMO

RATIONALE: Hypoxia favors stem cell quiescence, whereas normoxia is required for stem cell activation, but whether cardiac stem cell (CSC) function is regulated by the hypoxic/normoxic state of the cell is currently unknown. OBJECTIVE: A balance between hypoxic and normoxic CSCs may be present in the young heart, although this homeostatic control may be disrupted with aging. Defects in tissue oxygenation occur in the old myocardium, and this phenomenon may expand the pool of hypoxic CSCs, which are no longer involved in myocyte renewal. METHODS AND RESULTS: Here, we show that the senescent heart is characterized by an increased number of quiescent CSCs with intact telomeres that cannot re-enter the cell cycle and form a differentiated progeny. Conversely, myocyte replacement is controlled only by frequently dividing CSCs with shortened telomeres; these CSCs generate a myocyte population that is chronologically young but phenotypically old. Telomere dysfunction dictates their actual age and mechanical behavior. However, the residual subset of quiescent young CSCs can be stimulated in situ by stem cell factor reversing the aging myopathy. CONCLUSIONS: Our findings support the notion that strategies targeting CSC activation and growth interfere with the manifestations of myocardial aging in an animal model. Although caution has to be exercised in the translation of animal studies to human beings, our data strongly suggest that a pool of functionally competent CSCs persists in the senescent heart and that this stem cell compartment can promote myocyte regeneration effectively, partly correcting the aging myopathy.


Assuntos
Envelhecimento/efeitos dos fármacos , Cardiomiopatias/metabolismo , Hipóxia/metabolismo , Mioblastos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Fator de Células-Tronco/farmacologia , Nicho de Células-Tronco , Envelhecimento/metabolismo , Animais , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/patologia , Ciclo Celular , Linhagem da Célula , Proliferação de Células , Senescência Celular/efeitos dos fármacos , Hipóxia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mioblastos Cardíacos/efeitos dos fármacos , Mioblastos Cardíacos/fisiologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Fator de Células-Tronco/uso terapêutico , Homeostase do Telômero
10.
J Biol Chem ; 289(22): 15544-53, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24713703

RESUMO

Staphylococcal SplB protease belongs to the chymotrypsin family. Chymotrypsin zymogen is activated by proteolytic processing at the N terminus, resulting in significant structural rearrangement at the active site. Here, we demonstrate that the molecular mechanism of SplB protease activation differs significantly and we characterize the novel mechanism in detail. Using peptide and protein substrates we show that the native signal peptide, or any N-terminal extension, has an inhibitory effect on SplB. Only precise N-terminal processing releases the full proteolytic activity of the wild type analogously to chymotrypsin. However, comparison of the crystal structures of mature SplB and a zymogen mimic show no rearrangement at the active site whatsoever. Instead, only the formation of a unique hydrogen bond network, distant form the active site, by the new N-terminal glutamic acid of mature SplB is observed. The importance of this network and influence of particular hydrogen bond interactions at the N terminus on the catalytic process is demonstrated by evaluating the kinetics of a series of mutants. The results allow us to propose a consistent model where changes in the overall protein dynamics rather than structural rearrangement of the active site are involved in the activation process.


Assuntos
Serina Proteases/química , Serina Proteases/metabolismo , Staphylococcus aureus/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Quimotripsina/química , Quimotripsina/genética , Quimotripsina/metabolismo , Cristalografia por Raios X , Precursores Enzimáticos/metabolismo , Ligação de Hidrogênio , Modelos Moleculares , Sinais Direcionadores de Proteínas/fisiologia , Estrutura Terciária de Proteína , Serina Proteases/genética , Staphylococcus aureus/genética , Relação Estrutura-Atividade
11.
Int J Biol Macromol ; 267(Pt 1): 131392, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582483

RESUMO

The main protease (Mpro) of SARS-CoV-2 is critical in the virus's replication cycle, facilitating the maturation of polyproteins into functional units. Due to its conservation across taxa, Mpro is a promising target for broad-spectrum antiviral drugs. Targeting Mpro with small molecule inhibitors, such as nirmatrelvir combined with ritonavir (Paxlovid™), which the FDA has approved for post-exposure treatment and prophylaxis, can effectively interrupt the replication process of the virus. A key aspect of Mpro's function is its ability to form a functional dimer. However, the mechanics of dimerization and its influence on proteolytic activity remain less understood. In this study, we utilized biochemical, structural, and molecular modelling approaches to explore Mpro dimerization. We evaluated critical residues, specifically Arg4 and Arg298, that are essential for dimerization. Our results show that changes in the oligomerization state of Mpro directly affect its enzymatic activity and dimerization propensity. We discovered a synergistic relationship influencing dimer formation, involving both intra- and intermolecular interactions. These findings highlight the potential for developing allosteric inhibitors targeting Mpro, offering promising new directions for therapeutic strategies.


Assuntos
Antivirais , Proteases 3C de Coronavírus , Multimerização Proteica , SARS-CoV-2 , SARS-CoV-2/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Humanos , Antivirais/farmacologia , Antivirais/química , Tratamento Farmacológico da COVID-19 , Modelos Moleculares , COVID-19/virologia , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química
12.
PLoS One ; 18(5): e0285208, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37195917

RESUMO

The decreased ß-cell mass and impaired ß-cell functionality are the primary causes of diabetes mellitus (DM). Nevertheless, the underlying molecular mechanisms by which ß-cell growth and function are controlled are not fully understood. In this work, we show that leucettines, known to be DYRK1A kinase inhibitors, can improve glucose-stimulated insulin secretion (GSIS) in rodent ß-cells and isolated islets, as well as in hiPSC-derived ß-cells islets. We confirm that DYRK1A is expressed in murine insulinoma cells MIN6. In addition, we found that treatment with selected leucettines stimulates proliferation of ß-cells and promotes MIN6 cell cycle progression to the G2/M phase. This effect is also confirmed by increased levels of cyclin D1, which is highly responsive to proliferative signals. Among other leucettines, leucettine L43 had a negligible impact on ß-cell proliferation, but markedly impair GSIS. However, leucettine L41, in combination with LY364947, a, a potent and selective TGF-ß type-I receptor, significantly promotes GSIS in various cellular diabetic models, including MIN6 and INS1E cells in 2D and 3D culture, iPSC-derived ß-cell islets derived from iPSC, and isolated mouse islets, by increased insulin secretion and decreased glucagon level. Our findings confirm an important role of DYRK1A inhibitors as modulators of ß-cells function and suggested a new potential target for antidiabetic therapy. Moreover, we show in detail that leucettine derivatives represent promising antidiabetic agents and are worth further evaluation, especially in vivo.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Neoplasias Pancreáticas , Camundongos , Animais , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Glucose/metabolismo , Insulina Regular Humana/metabolismo , Neoplasias Pancreáticas/metabolismo , Organoides/metabolismo
13.
Sci Rep ; 13(1): 14457, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660069

RESUMO

Grandiose narcissists claim that they have better-than-average emotion recognition abilities, but many objective tests do not support this claim. We sought to clarify the relation between grandiose (both agentic and communal) narcissism and emotion recognition by taking a closer look at the components of emotion recognition. In two studies (N1 = 147, N2 = 520), using culturally distinct samples and different stimulus materials, we investigated the relation between grandiose narcissism and signal decoding (accurate view of the intended emotion displayed in an expression) as well as noise perception (inaccurate deciphering of secondary emotions that are not part of the emotional message). Narcissism was inconsistently related to signal decoding, but consistently and positively related to noise perception. High grandiose (agentic and communal) narcissists are not necessarily better at signal decoding, but are more susceptible to noise perception. We discuss implications for narcissists' social interactions and interpersonal relationships.


Assuntos
Emoções , Narcisismo , Relações Interpessoais , Delusões , Percepção
14.
J Med Chem ; 66(6): 4009-4024, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36883902

RESUMO

A clinical casein kinase 2 inhibitor, CX-4945 (silmitasertib), shows significant affinity toward the DYRK1A and GSK3ß kinases, involved in down syndrome phenotypes, Alzheimer's disease, circadian clock regulation, and diabetes. This off-target activity offers an opportunity for studying the effect of the DYRK1A/GSK3ß kinase system in disease biology and possible line extension. Motivated by the dual inhibition of these kinases, we solved and analyzed the crystal structures of DYRK1A and GSK3ß with CX-4945. We built a quantum-chemistry-based model to rationalize the compound affinity for CK2α, DYRK1A, and GSK3ß kinases. Our calculations identified a key element for CK2α's subnanomolar affinity to CX-4945. The methodology is expandable to other kinase selectivity modeling. We show that the inhibitor limits DYRK1A- and GSK3ß-mediated cyclin D1 phosphorylation and reduces kinase-mediated NFAT signaling in the cell. Given the CX-4945's clinical and pharmacological profile, this inhibitory activity makes it an interesting candidate with potential for application in additional disease areas.


Assuntos
Caseína Quinase II , Naftiridinas , Glicogênio Sintase Quinase 3 beta , Naftiridinas/farmacologia , Fenazinas , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química
15.
Sci Rep ; 13(1): 18114, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872245

RESUMO

The selective inhibition of kinases from the diabetic kinome is known to promote the regeneration of beta cells and provide an opportunity for the curative treatment of diabetes. The effect can be achieved by carefully tailoring the selectivity of inhibitor toward a particular kinase, especially DYRK1A, previously associated with Down syndrome and Alzheimer's disease. Recently DYRK1A inhibition has been shown to promote both insulin secretion and beta cells proliferation. Here, we show that commonly available flavones are effective inhibitors of DYRK1A. The observed biochemical activity of flavone compounds is confirmed by crystal structures solved at 2.06 Å and 2.32 Å resolution, deciphering the way inhibitors bind in the ATP-binding pocket of the kinase, which is driven by the arrangement of hydroxyl moieties. We also demonstrate antidiabetic properties of these biomolecules and prove that they could be further improved by therapy combined with TGF-ß inhibitors. Our data will allow future structure-based optimization of the presented scaffolds toward potent, bioavailable and selective anti-diabetic drugs.


Assuntos
Doença de Alzheimer , Flavonas , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Flavonas/farmacologia , Flavonas/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Proliferação de Células , Inibidores de Proteínas Quinases/uso terapêutico
16.
J Biol Chem ; 286(25): 22414-25, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21521686

RESUMO

The mammalian cryptochromes mCRY1 and mCRY2 act as transcriptional repressors within the 24-h transcription-translational feedback loop of the circadian clock. The C-terminal tail and a preceding predicted coiled coil (CC) of the mCRYs as well as the C-terminal region of the transcription factor mBMAL1 are involved in transcriptional feedback repression. Here we show by fluorescence polarization and isothermal titration calorimetry that purified mCRY1/2CCtail proteins form stable heterodimeric complexes with two C-terminal mBMAL1 fragments. The longer mBMAL1 fragment (BMAL490) includes Lys-537, which is rhythmically acetylated by mCLOCK in vivo. mCRY1 (but not mCRY2) has a lower affinity to BMAL490 than to the shorter mBMAL1 fragment (BMAL577) and a K537Q mutant version of BMAL490. Using peptide scan analysis we identify two mBMAL1 binding epitopes within the coiled coil and tail regions of mCRY1/2 and document the importance of positively charged mCRY1 residues for mBMAL1 binding. A synthetic mCRY coiled coil peptide binds equally well to the short and to the long (wild-type and K537Q mutant) mBMAL1 fragments. In contrast, a peptide including the mCRY1 tail epitope shows a lower affinity to BMAL490 compared with BMAL577 and BMAL490(K537Q). We propose that Lys-537(mBMAL1) acetylation enhances mCRY1 binding by affecting electrostatic interactions predominantly with the mCRY1 tail. Our data reveal different molecular interactions of the mCRY1/2 tails with mBMAL1, which may contribute to the non-redundant clock functions of mCRY1 and mCRY2. Moreover, our study suggests the design of peptidic inhibitors targeting the interaction of the mCRY1 tail with mBMAL1.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Relógios Circadianos/genética , Criptocromos/metabolismo , Transcrição Gênica , Fatores de Transcrição ARNTL/química , Fatores de Transcrição ARNTL/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Proteínas CLOCK/metabolismo , Criptocromos/química , Criptocromos/deficiência , Criptocromos/genética , Técnicas de Inativação de Genes , Ligantes , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Mapeamento de Peptídeos , Ligação Proteica , Dobramento de Proteína , Multimerização Proteica , Estrutura Quaternária de Proteína , Eletricidade Estática
17.
Psychophysiology ; 59(11): e14084, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35569090

RESUMO

Adaptive emotional responding is crucial for psychological well-being and the quality of social interactions. Resting heart rate variability (HRV), a measure of autonomic nervous system activity, has been suggested to index individual differences in emotion regulation (ER). As non-intimate social interactions require more regulatory efforts than intimate social interactions, we predicted that the association between HRV and affective interaction quality is moderated by the perceived intimacy of the exchange. Thus, we expected higher HRV to be particularly beneficial for affective interaction quality in non-intimate social interactions. Resting HRV was measured in the laboratory (N = 144). Subsequently, participants reported their affective interaction quality-as indicated by more positive and fewer negative emotions perceived in the self and the other-during an experience-sampling social interaction diary task. As predicted, in non-intimate interactions, individuals with higher HRV reported more positive and fewer negative emotions and perceived fewer negative emotions in their interaction partners. The results provide further insights into the relationship between HRV and emotional experiences during social interactions.


Assuntos
Sistema Nervoso Autônomo , Interação Social , Sistema Nervoso Autônomo/fisiologia , Emoções/fisiologia , Frequência Cardíaca/fisiologia , Humanos , Parceiros Sexuais
18.
Sci Rep ; 12(1): 9593, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688849

RESUMO

The replication complex (RC) of SARS-CoV-2 was recently shown to be one of the fastest RNA-dependent RNA polymerases of any known coronavirus. With this rapid elongation, the RC is more prone to incorporate mismatches during elongation, resulting in a highly variable genomic sequence. Such mutations render the design of viral protein targets difficult, as drugs optimized for a given viral protein sequence can quickly become inefficient as the genomic sequence evolves. Here, we use biochemical experiments to characterize features of RNA template recognition and elongation fidelity of the SARS-CoV-2 RdRp, and the role of the exonuclease, nsp14. Our study highlights the 2'OH group of the RNA ribose as a critical component for RdRp template recognition and elongation. We show that RdRp fidelity is reduced in the presence of the 3' deoxy-terminator nucleotide 3'dATP, which promotes the incorporation of mismatched nucleotides (leading to U:C, U:G, U:U, C:U, and A:C base pairs). We find that the nsp10-nsp14 heterodimer is unable to degrade RNA products lacking free 2'OH or 3'OH ribose groups. Our results suggest the potential use of 3' deoxy-terminator nucleotides in RNA-derived oligonucleotide inhibitors as antivirals against SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Antivirais/química , Antivirais/farmacologia , Humanos , Nucleotídeos/farmacologia , RNA Viral/genética , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/genética , Ribose , SARS-CoV-2/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/genética , Proteínas Virais/farmacologia , Replicação Viral/genética
19.
Structure ; 30(8): 1050-1054.e2, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35609600

RESUMO

During RNA replication, coronaviruses require proofreading to maintain the integrity of their large genomes. Nsp14 associates with viral polymerase complex to excise the mismatched nucleotides. Aside from the exonuclease activity, nsp14 methyltransferase domain mediates cap methylation, facilitating translation initiation and protecting viral RNA from recognition by the innate immune sensors. The nsp14 exonuclease activity is modulated by a protein co-factor nsp10. While the nsp10/nsp14 complex structure is available, the mechanistic basis for nsp10-mediated modulation remains unclear in the absence of the nsp14 structure. Here, we provide a crystal structure of nsp14 in an apo-form. Comparative analysis of the apo- and nsp10-bound structures explain the modulatory role of the co-factor protein and reveal the allosteric nsp14 control mechanism essential for drug discovery. Further, the flexibility of the N-terminal lid of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nsp14 structure presented in this study rationalizes the recently proposed idea of nsp14/nsp10/nsp16 ternary complex.


Assuntos
Exorribonucleases , Proteínas não Estruturais Virais , Proteínas Virais Reguladoras e Acessórias , Exonucleases , Exorribonucleases/química , Metiltransferases/química , Dobramento de Proteína , RNA Viral/metabolismo , SARS-CoV-2 , Proteínas não Estruturais Virais/química , Proteínas Virais Reguladoras e Acessórias/química
20.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35745616

RESUMO

Immune checkpoint targeting immunotherapy has revolutionized the treatment of certain cancers in the recent years. Determination of the status of immune checkpoint expression in particular cancers may assist decision making. Here, we describe the development of a single-stranded aptamer-based molecular probe specifically recognizing human PD-L1. Target engaging aptamers are selected by iterative enrichment from a random ssDNA pool and the binding is characterized biochemically. Specificity and dose dependence is demonstrated in vitro in the cell culture using human kidney tumor cells (786-0), human melanoma cells (WM115 and WM266.4) and human glioblastoma LN18 cancer cells. The utility of the probe in vivo is demonstrated using two mouse tumor models, where we show that the probe exhibits excellent potential in imaging. We postulate that further development of the probe may allow universal imaging of different types of tumors depending on their PD-L1 status, which may find utility in cancer diagnosis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa