Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Infect Dis ; 75(12): 2053-2059, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-35579991

RESUMO

BACKGROUND: Mucosal antibodies can prevent virus entry and replication in mucosal epithelial cells and therefore virus shedding. Parenteral booster injection of a vaccine against a mucosal pathogen promotes stronger mucosal immune responses following prior mucosal infection compared with injections of a parenteral vaccine in a mucosally naive subject. We investigated whether this was also the case for the BNT162b2 coronavirus disease 2019 (COVID-19) messenger RNA vaccine. METHODS: Twenty recovered COVID-19 subjects (RCSs) and 23 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-naive subjects were vaccinated with, respectively, 1 and 2 doses of the BNT162b2 COVID-19 vaccine. Nasal epithelial lining fluid (NELF) and plasma were collected before and after vaccination and assessed for immunoglobulin G (IgG) and IgA antibody levels to Spike and for their ability to neutralize binding of Spike to angiotensin-converting enzyme-2 receptor. Blood was analyzed 1 week after vaccination for the number of Spike-specific antibody-secreting cells (ASCs) with a mucosal tropism. RESULTS: All RCSs had both nasal and blood SARS-CoV-2-specific antibodies at least 90 days after initial diagnosis. In RCSs, a single dose of vaccine amplified preexisting Spike-specific IgG and IgA antibody responses in both NELF and blood against both vaccine homologous and variant strains, including Delta. These responses were associated with Spike-specific IgG and IgA ASCs with a mucosal tropism in blood. Nasal IgA and IgG antibody responses were lower in magnitude in SARS-CoV-2-naive subjects after 2 vaccine doses compared with RCSs after 1 dose. CONCLUSIONS: Mucosal immune response to the SARS-CoV-2 Spike protein is higher in RCSs after a single vaccine dose compared with SARS-CoV-2-naive subjects after 2 doses.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Vacina BNT162 , Vacinas contra COVID-19 , Vacinação , Imunoglobulina G , Anticorpos Antivirais
3.
Nature ; 477(7365): 462-5, 2011 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-21866102

RESUMO

Vibrio cholerae is a globally important pathogen that is endemic in many areas of the world and causes 3-5 million reported cases of cholera every year. Historically, there have been seven acknowledged cholera pandemics; recent outbreaks in Zimbabwe and Haiti are included in the seventh and ongoing pandemic. Only isolates in serogroup O1 (consisting of two biotypes known as 'classical' and 'El Tor') and the derivative O139 can cause epidemic cholera. It is believed that the first six cholera pandemics were caused by the classical biotype, but El Tor has subsequently spread globally and replaced the classical biotype in the current pandemic. Detailed molecular epidemiological mapping of cholera has been compromised by a reliance on sub-genomic regions such as mobile elements to infer relationships, making El Tor isolates associated with the seventh pandemic seem superficially diverse. To understand the underlying phylogeny of the lineage responsible for the current pandemic, we identified high-resolution markers (single nucleotide polymorphisms; SNPs) in 154 whole-genome sequences of globally and temporally representative V. cholerae isolates. Using this phylogeny, we show here that the seventh pandemic has spread from the Bay of Bengal in at least three independent but overlapping waves with a common ancestor in the 1950s, and identify several transcontinental transmission events. Additionally, we show how the acquisition of the SXT family of antibiotic resistance elements has shaped pandemic spread, and show that this family was first acquired at least ten years before its discovery in V. cholerae.


Assuntos
Cólera/epidemiologia , Cólera/transmissão , Pandemias/estatística & dados numéricos , Vibrio cholerae/genética , Vibrio cholerae/isolamento & purificação , Cólera/microbiologia , Genoma Bacteriano/genética , Haiti/epidemiologia , Humanos , Funções Verossimilhança , Epidemiologia Molecular , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Vibrio cholerae/classificação , Zimbábue/epidemiologia
4.
J Immunol ; 188(4): 1686-97, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22250081

RESUMO

The ability of activated B cells to protect against various experimental autoimmune or allergic diseases makes them attractive for use in cell-based therapies. We describe an efficient way to generate B cells with strong suppressive functions by incubating naive B cells with a relevant Ag conjugated to cholera toxin B subunit (CTB). This allows most B cells, irrespective of BCR, to take up and present Ag and induces their expression of latency-associated polypeptide (LAP)/TGF-ß and after adoptive transfer also their production of IL-10. With OVA as model Ag, when naive T cells were cocultured in vitro with B cells pretreated with OVA conjugated to CTB (OVA/CTB) Ag-specific CD4(+) Foxp3 regulatory T (Treg) cells increased >50-fold. These cells effectively suppressed CD25(-)CD4(+) effector T (Teff) cells in secondary cultures. Adoptive transfer of OVA/CTB-treated B cells to mice subsequently immunized with OVA in CFA induced increase in Foxp3 Treg cells together with suppression and depletion of Teff cells. Likewise, adoptive transfer of B cells pulsed with myelin oligodendrocyte glycoprotein peptide(35-55) (MOGp) conjugated to CTB increased the number of Treg cells, suppressed MOGp-specific T cell proliferation and IL-17 and IFN-γ production, and prevented the development of experimental autoimmune encephalomyelitis. Similar effects were seen when B cells were given "therapeutically" to mice with early-stage experimental autoimmune encephalomyelitis. Our results suggest that B cells pulsed in vitro with relevant Ag/CTB conjugates may be used in cell therapy to induce Ag-specific suppression of autoimmune disease.


Assuntos
Antígenos/imunologia , Linfócitos B , Toxina da Cólera/imunologia , Encefalomielite Autoimune Experimental/imunologia , Linfócitos T Reguladores/imunologia , Transferência Adotiva/métodos , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células/efeitos dos fármacos , Toxina da Cólera/administração & dosagem , Feminino , Fatores de Transcrição Forkhead/análise , Glicoproteínas/imunologia , Tolerância Imunológica , Interferon gama/biossíntese , Interleucina-17/biossíntese , Interleucina-17/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito , Ovalbumina/imunologia , Ovalbumina/farmacologia , Fragmentos de Peptídeos/imunologia , Proteínas Recombinantes de Fusão , Linfócitos T Reguladores/metabolismo
5.
Virol J ; 9: 215, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22995185

RESUMO

BACKGROUND: Sublingual (s.l.) administration of soluble protein antigens, inactivated viruses, or virus-like particles has been shown to induce broad immune responses in mucosal and extra-mucosal tissues. Recombinant replication-defective adenovirus vectors (rADVs) infect mucosa surface and therefore can serve as a mucosal antigen delivery vehicle. In this study we examined whether s.l. immunization with rADV encoding spike protein (S) (rADV-S) of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) induces protective immunity against SARS-CoV and could serve as a safe mucosal route for delivery of rADV. RESULTS: Here, we show that s.l. administration of rADV-S induced serum SARS-CoV neutralizing and airway IgA antibodies in mice. These antibody responses are comparable to those induced by intranasal (i.n.) administration. In addition, s.l. immunization induced antigen-specific CD8+ T cell responses in the lungs that are superior to those induced by intramuscular immunization. Importantly, unlike i.n. administration, s.l. immunization with rADV did not redirect the rADV vector to the olfactory bulb. CONCLUSION: Our study indicates that s.l. immunization with rADV-S is safe and effective in induction of a broad spectrum of immune responses and presumably protection against infection with SARS-CoV.


Assuntos
Encéfalo/virologia , Glicoproteínas de Membrana/imunologia , Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Proteínas do Envelope Viral/imunologia , Administração Sublingual , Animais , Anticorpos Antivirais/imunologia , Encéfalo/imunologia , Feminino , Humanos , Imunidade nas Mucosas , Imunização , Glicoproteínas de Membrana/administração & dosagem , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Síndrome Respiratória Aguda Grave/virologia , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral/administração & dosagem , Proteínas do Envelope Viral/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Vacinas Virais/imunologia
6.
J Immunol ; 184(9): 4842-51, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20351191

RESUMO

Langerhans cells (LCs) are dendritic cells (DCs) localized in stratified epithelia, such as those overlaying skin, buccal mucosa, and vagina. The contribution of LCs to the promotion or control of immunity initiated at epithelial sites remains debated. We report in this paper that an immunogen comprising OVA linked to the B subunit of cholera toxin, used as delivery vector, was efficient to generate CTLs after vaginal immunization. Using Lang-EGFP mice, we evaluated the contribution of distinct DC subsets to the generation of CD4 and CD8 T cell responses. We demonstrate that the vaginal epithelium, unlike the skin epidermis, includes a minor population of LCs and a major subset of langerin(-) DCs. Intravaginally administered Ag is taken up by LCs and langerin(-) DCs and carried up to draining lymph nodes, where both subsets prime CD8 T cells, unlike blood-derived DCs, although with distinct capabilities. LCs prime CD8 T cells with a cytokine profile dominated by IL-17, whereas Lang(-) DCs induce IFN-gamma-producing T cells. Using Lang-DTR-EGFP mice to ensure a transient ablation of LCs, we found that these cells not only are dispensable for the generation of genital CTL responses but also downregulate these responses, by a mechanism that may involve IL-10 and IL-17 cytokines. This finding has implications for the development of mucosal vaccines and immunotherapeutic strategies designed for the targeting of DCs.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Testes Imunológicos de Citotoxicidade , Interleucina-17/biossíntese , Células de Langerhans/imunologia , Mucosa Bucal/imunologia , Vacinas Conjugadas/imunologia , Vagina/imunologia , Administração Intravaginal , Sequência de Aminoácidos , Animais , Linfócitos T CD8-Positivos/metabolismo , Células Cultivadas , Toxina da Cólera/administração & dosagem , Toxina da Cólera/imunologia , Técnicas de Cocultura , Testes Imunológicos de Citotoxicidade/métodos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Células de Langerhans/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Mucosa Bucal/citologia , Mucosa Bucal/metabolismo , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/imunologia , Vacinas Conjugadas/administração & dosagem , Vagina/citologia , Vagina/metabolismo
7.
Nat Med ; 11(4 Suppl): S45-53, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15812489

RESUMO

There is currently great interest in developing mucosal vaccines against a variety of microbial pathogens. Mucosally induced tolerance also seems to be a promising form of immunomodulation for treating certain autoimmune diseases and allergies. Here we review the properties of the mucosal immune system and discuss advances in the development of mucosal vaccines for protection against infections and for treatment of various inflammatory disorders.


Assuntos
Imunidade nas Mucosas , Vacinas , Adjuvantes Imunológicos , Animais , Doenças Autoimunes/terapia , Controle de Doenças Transmissíveis , Sistemas de Liberação de Medicamentos , Humanos , Hipersensibilidade/terapia , Tecido Linfoide/imunologia , Vacinas/uso terapêutico
8.
J Immunol ; 182(11): 6851-60, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19454681

RESUMO

Our previous studies demonstrated the potential of the sublingual (s.l.) route for delivering vaccines capable of inducing mucosal as well as systemic immune responses. Those findings prompted us to attempt to identify possible inductive mechanism of s.l. vaccination for immune responses. Within 2 h after s.l. administration with cholera toxin (CT), significantly higher numbers of MHC class II(+) cells accumulated in the s.l. mucosa. Of note, there were brisk expression levels of both CCL19 and CCL21 in cervical lymph nodes (CLN) 24 h after s.l. vaccination with CT. In reconstitution experiments using OVA-specific CD4(+) or CD8(+) T cells, s.l. vaccination elicited strong Ag-specific T cell proliferation mainly in CLN. Interestingly, Ag-specific T cell proliferation completely disappeared in CD11c-depleted and CCR7(-/-) mice but not in Langerin-depleted, macrophage-depleted, and CCR6(-/-) mice. Similar to CD4(+) T cell responses, induction of Ag-specific IgG (systemic) and IgA (mucosal) Ab responses were significantly reduced in CD11c-depleted and CCR7(-/-) mice after s.l. vaccination with OVA plus CT. Although CD8alpha(-) dendritic cells ferried Ag from the s.l. mucosa, both migratory CD8alpha(-) and resident CD8alpha(+) dendritic cells were essential to prime CD4(+) T cells in the CLN. On the basis of these findings, we believe that CCR7 expressed CD8alpha(-)CD11c(+) cells ferry Ag in the s.l. mucosa, migrate into the CLN, and share the Ag with resident CD8alpha(+)CD11c(+) cells for the initiation of Ag-specific T and B cell responses following s.l. challenge. We propose that the s.l. mucosa is one of the effective mucosal inductive sites regulated by the CCR7-CCL19/CCL21 pathway.


Assuntos
Quimiocina CCL19/metabolismo , Quimiocina CCL21/metabolismo , Células Dendríticas/imunologia , Receptores CCR7/metabolismo , Vacinas/administração & dosagem , Administração Sublingual , Animais , Linfócitos B , Toxina da Cólera/administração & dosagem , Toxina da Cólera/farmacologia , Linfonodos , Camundongos , Camundongos Knockout , Mucosa Bucal/imunologia , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Farmacocinética , Linfócitos T , Vacinas/imunologia , Vacinas/farmacocinética
9.
J Immunol ; 183(12): 7851-9, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19933861

RESUMO

We have recently reported that the sublingual (s.l.) mucosa is an efficient site for inducing systemic and mucosal immune responses. In this study, the potential of s.l. immunization to induce remote Ab responses and CD8(+) cytotoxic responses in the female genital tract was examined in mice by using a nonreplicating Ag, OVA, and cholera toxin (CT) as an adjuvant. Sublingual administration of OVA and CT induced Ag-specific IgA and IgG Abs in blood and in cervicovaginal secretions. These responses were associated with large numbers of IgA Ab-secreting cells (ASCs) in the genital mucosa. Genital ASC responses were similar in magnitude and isotype distribution after s.l., intranasal, or vaginal immunization and were superior to those seen after intragastric immunization. Genital, but not blood or spleen, IgA ASC responses were inhibited by treatment with anti-CCL28 Abs, suggesting that the chemokine CCL28 plays a major role in the migration of IgA ASC progenitors to the reproductive tract mucosa. Furthermore, s.l. immunization with OVA induced OVA-specific effector CD8(+) cytolytic T cells in the genital mucosa, and these responses required coadministration of the CT adjuvant. Furthermore, s.l. administration of human papillomavirus virus-like particles with or without the CT adjuvant conferred protection against genital challenge with human papillomavirus pseudovirions. Taken together, these findings underscore the potential of s.l. immunization as an efficient vaccination strategy for inducing genital immune responses and should impact on the development of vaccines against sexually transmitted diseases.


Assuntos
Anticorpos Antibacterianos/biossíntese , Células Produtoras de Anticorpos/imunologia , Toxina da Cólera/imunologia , Papillomavirus Humano 16/imunologia , Ovalbumina/imunologia , Infecções por Papillomavirus/prevenção & controle , Linfócitos T Citotóxicos/imunologia , Neoplasias do Colo do Útero/prevenção & controle , Adjuvantes Imunológicos/administração & dosagem , Administração Sublingual , Animais , Anticorpos Antivirais/biossíntese , Células Produtoras de Anticorpos/citologia , Células Produtoras de Anticorpos/virologia , Diferenciação Celular/imunologia , Células Cultivadas , Toxina da Cólera/administração & dosagem , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mucosa/imunologia , Mucosa/virologia , Ovalbumina/administração & dosagem , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Linfócitos T Citotóxicos/virologia , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/virologia , Vírion/imunologia
10.
Hum Vaccin ; 7(1): 110-4, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21263223

RESUMO

The sublingual route has been used for many years to deliver drugs and small molecules to the bloodstream. Surprisingly, the potential of this route for delivering vaccines has received very little if any attention until recently. During the past few years, a number of laboratories have documented the efficacy of sublingual immunization for inducing a broad range of immune responses in different experimental animal systems using a variety of antigens, including soluble proteins, inert particulate antigens (killed viruses, virus-like particles, bacterial extracts) as well as live-attenuated viruses. In most cases, systemic and mucosal immune responses, including humoral and cytotoxic T-cell responses were induced in both mucosal and extra-mucosal tissues. Overall, sublingual immunization was comparable to nasal immunization regarding the magnitude, breadth, and anatomic dissemination of the induced immune responses. Importantly, and contrary to nasal administration, sublingual administration did not redirect antigens and/or adjuvants to the brain. Here we review the results of pre-clinical studies using animal models of respiratory, intestinal and genital infections. These promising results provide a foundation for testing the approach in humans.


Assuntos
Vacinação/métodos , Vacinas/administração & dosagem , Vacinas/imunologia , Administração Sublingual , Animais , Modelos Animais de Doenças , Feminino , Gastroenteropatias/prevenção & controle , Doenças dos Genitais Femininos/prevenção & controle , Infecções Respiratórias/prevenção & controle
11.
Proc Natl Acad Sci U S A ; 105(5): 1644-9, 2008 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-18227512

RESUMO

We assessed whether the sublingual (s.l.) route would be an effective means of delivering vaccines against influenza virus in mice by using either formalin-inactivated or live influenza A/PR/8 virus (H1N1). Sublingual administration of inactivated influenza virus given on two occasions induced both systemic and mucosal antibody responses and conferred protection against a lethal intranasal (i.n.) challenge with influenza virus. Coadministration of a mucosal adjuvant (mCTA-LTB) enhanced these responses and resulted in complete protection against respiratory viral challenge. In addition, s.l. administration of formalin-inactivated A/PR/8 plus mCTA-LTB induced systemic expansion of IFN-gamma-secreting T cells and virus-specific cytotoxic T lymphocyte responses. Importantly, a single s.l. administration of live A/PR/8 virus was not pathogenic and induced protection mediated by both acquired and innate immunity. Moreover, s.l. administration of live A/PR/8 virus conferred heterosubtypic protection against respiratory challenge with H3N2 virus. Unlike the i.n. route, the A/PR/8 virus, whether live or inactivated, did not migrate to or replicate in the CNS after s.l. administration. Based on these promising findings, we propose that the s.l. mucosal route offers an attractive alternative to mucosal routes for administering influenza vaccines.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/administração & dosagem , Infecções por Orthomyxoviridae/prevenção & controle , Vacinas de Produtos Inativados/administração & dosagem , Administração Sublingual , Animais , Anticorpos Antivirais/sangue , Antígenos Virais/análise , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Sistema Nervoso Central/imunologia , Imunidade Inata , Imunidade nas Mucosas , Interferon gama/metabolismo , Camundongos , Infecções por Orthomyxoviridae/imunologia , Vacinação
12.
EBioMedicine ; 73: 103679, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34763205

RESUMO

BACKGROUND: The immunogenicity of a two-dose mRNA COVID-19 vaccine regimen is low in kidney transplant (KT) recipients. Here, we provide a thorough assessment of the immunogenicity of a three-dose COVID-19 vaccine regimen in this population. METHODS: We performed a prospective longitudinal study in sixty-one KT recipients given three doses of the BNT162b2 COVID-19 vaccine. We performed semi-structured pharmacovigilance interviews and monitored donor-specific antibodies and kidney function. We compared levels of anti-spike IgG, pseudo-neutralization activity against vaccine homologous and heterologous variants, frequency of spike-specific interferon (IFN)-γ-secreting cells, and antigen-induced cytokine production 28 days after the second and third doses. FINDINGS: Reactions to vaccine were mild. One patient developed donor-specific anti-HLA antibodies after the second dose which could be explained by non-adherence to immunosuppressive therapy. Spike-specific IgG seroconversion raised from 44·3% (n=27) after the second dose to 62·3% (n=38) after the third dose (p<0·05). The mean level of spike-specific IgG increased from 1620 (SD, 3460) to 8772 (SD, 16733) AU/ml (p<0·0001). Serum neutralizing activity increased after the third dose for all variants of concern tested including the Delta variant (p<0·0001). The frequency of spike-specific IFN-γ-secreting cells increased from 19·9 (SD, 56·0) to 64·0 (SD, 76·8) cells/million PBMCs after the third dose (p<0·0001). A significant increase in IFN-γ responses was also observed in patients who remained seronegative after three doses (p<0·0001). INTERPRETATION: A third dose of the BNT162b2 vaccine increases both cross-variant neutralizing antibody and cellular responses in KT recipients with an acceptable tolerability profile. FUNDING: Nice University Hospital, University Cote d'Azur.


Assuntos
Anticorpos Neutralizantes/imunologia , Vacina BNT162/imunologia , COVID-19/imunologia , Transplante de Rim , Idoso , Anticorpos Neutralizantes/sangue , Autoanticorpos/sangue , Vacina BNT162/administração & dosagem , Vacina BNT162/efeitos adversos , COVID-19/prevenção & controle , COVID-19/virologia , Feminino , Rejeição de Enxerto/prevenção & controle , Antígenos HLA/imunologia , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunossupressores/uso terapêutico , Interferon gama/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Fatores de Risco , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia
13.
Infect Immun ; 78(10): 4251-60, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20696831

RESUMO

Sublingual (SL) immunization has been described as an effective novel way to induce mucosal immune responses in the respiratory and genital tracts. We examined the potential of SL immunization against Helicobacter pylori to stimulate immune responses in the gastrointestinal mucosa and protect against H. pylori infection. Mice received two SL immunizations with H. pylori lysate antigens and cholera toxin as an adjuvant, and after challenge with live H. pylori bacteria, their immune responses and protection were evaluated, as were immune responses prior to challenge. SL immunization induced enhanced proliferative responses to H. pylori antigens in cervicomandibular lymph nodes and provided at least the same level of immune responses and protection as corresponding intragastric immunization. Protection in SL-immunized mice was associated with strong H. pylori-specific serum IgG and IgA antibody responses in the stomach and intestine, with strong proliferation and gamma interferon (IFN-γ) and interleukin-17 (IL-17) production by spleen and mesenteric lymph node T cells stimulated with H. pylori antigens in vitro, and with increased IFN-γ and IL-17 gene expression in the stomach compared to levels in infected unimmunized mice. Immunohistochemical studies showed enhanced infiltration of CD4(+) T cells and CD19(+) B cells into the H. pylori-infected stomach mucosa of SL-immunized but not unimmunized H. pylori-infected mice, which coincided with increased expression of the mucosal addressin cell adhesion molecule (MAdCAM-1) and T and B cell-attracting chemokines CXCL10 and CCL28. We conclude that, in mice, SL immunization can effectively induce protection against H. pylori infection in association with strong T and B cell infiltration into the stomach.


Assuntos
Linfócitos B/fisiologia , Vacinas Bacterianas/administração & dosagem , Infecções por Helicobacter/prevenção & controle , Helicobacter pylori/imunologia , Linfócitos T/fisiologia , Administração Sublingual , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Feminino , Regulação da Expressão Gênica/fisiologia , Linfonodos , Camundongos , Camundongos Endogâmicos C57BL , Mucoproteínas , Organismos Livres de Patógenos Específicos , Estômago/citologia , Estômago/imunologia , Linfócitos T Auxiliares-Indutores
14.
J Immunol ; 181(12): 8278-87, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19050244

RESUMO

Mucosal administration of Ag conjugated to cholera toxin B subunit (CTB) can efficiently induce peripheral immunologic tolerance, so-called oral tolerance, associated with development of Foxp3(+)CD25(+)CD4(+) regulatory T (Treg) cells. Using an established sublingual tolerization regimen with Ag(OVA)/CTB conjugate, wherein CTB mediates Ag uptake and presentation by most B lymphocytes irrespective of their Ag specificity, we have assessed the importance of B cells for induction of Ag-specific Treg cells and oral tolerance. We found that Treg cells are reduced in microMT(-/-) B cell-deficient mice compared with wild-type (WT) mice. After sublingual Ag/CTB treatment, Treg cells increased much more in WT than in microMT(-/-) mice; however, adoptive transfer of B cells before treatment normalized Treg cell development and functional oral tolerance. B cells from OVA/CTB-treated mice expressed more IL-10 and less CD86 than control B cells. Adoptive transfer of these cells before parenteral immunization with OVA led to efficient suppression of proliferation and to induction of apoptotic depletion of Ag-specific CD25(-)CD4(+) effector T cells associated with the expansion of Treg cells. However, also OVA/CTB-treated microMT(-/-) mice could suppress the immune response to parenteral immunization with OVA, which was associated with a strong increase in Foxp3(-)CD4(+) T cells expressing LAP/TGF-beta. Our results indicate that mucosal tolerance comprises at least two separate pathways: one being B cell dependent and associated with expansion of Treg cells and Treg-mediated suppression and depletion of effector T cells, and one being B cell independent and associated with development of Foxp3(-)LAP(+)TGF-beta(+) regulatory T cells.


Assuntos
Subpopulações de Linfócitos B/imunologia , Proliferação de Células , Toxina da Cólera/imunologia , Tolerância Imunológica , Mucosa Bucal/imunologia , Ovalbumina/imunologia , Fragmentos de Peptídeos/imunologia , Subunidades Proteicas/imunologia , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Sequência de Aminoácidos , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/transplante , Subpopulações de Linfócitos B/transplante , Toxina da Cólera/administração & dosagem , Toxina da Cólera/metabolismo , Reagentes de Ligações Cruzadas/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Dados de Sequência Molecular , Mucosa Bucal/citologia , Ovalbumina/administração & dosagem , Ovalbumina/metabolismo , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/metabolismo , Subunidades Proteicas/administração & dosagem , Subunidades Proteicas/metabolismo , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/transplante
16.
Curr Opin Gastroenterol ; 24(6): 713-9, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19122521

RESUMO

PURPOSE OF REVIEW: Oral immunization with vaccines against intestinal infectious diseases has been extensively explored for several decades. Despite the immunologic and economic rationale behind oral immunization, only a few mucosal vaccines are available for the prevention of mucosal infections. Here, we summarize the current status of such vaccines, with a focus on intestinal infectious diseases, describe alternative approaches, and analyze advantages and difficulties encountered with a broad implementation of these vaccines. RECENT FINDINGS: Due to the limited absorption from the intestinal tract and sensitivity to degradation, oral vaccines composed of killed bacteria and viruses or antigens isolated from infectious agents have not been successful. New, live-attenuated bacterial and viral or edible plant-derived vaccines, however, have been recently introduced for this purpose. Furthermore, systemic immunization with vaccines composed of bacterial polysaccharides chemically coupled to suitable protein carriers induces high levels of IgG antibodies, which may provide immunity toward Salmonella typhi, Shigella, and Escherichia coli. SUMMARY: Further improvements in antigen-delivery systems, the development of adjuvants that are safe for mucosal application in humans, use of live-attenuated vaccines and microbial vectors, and production of certain vaccines in plant expression systems are likely to contribute to the broader use of oral vaccines in the future.


Assuntos
Infecções Bacterianas/microbiologia , Infecções Bacterianas/prevenção & controle , Gastroenteropatias/microbiologia , Gastroenteropatias/prevenção & controle , Imunização/métodos , Mucosa Intestinal/microbiologia , Vacinas/administração & dosagem , Administração Oral , Animais , Humanos
17.
Front Microbiol ; 9: 2609, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30429838

RESUMO

Shigella is a highly prevalent bacterium causing acute diarrhea and dysentery in developing countries. Shigella infections are treated with antibiotics but Shigellae are increasingly resistant to these drugs. Vaccination can be a countermeasure against emerging antibiotic-resistant shigellosis. Because of the structural variability in Shigellae O-antigen polysaccharides (Oag), cross-protective Shigella vaccines cannot be derived from single serotype-specific Oag. We created an attenuated Shigella flexneri 2a strain with one rather than multiple Oag units by disrupting the Oag polymerase gene (Δwzy), which broadened protective immunogenicity by exposing conserved surface proteins. Inactivated Δwzy mutant cells combined with Escherichia coli double mutant LT(R192G/L211A) as adjuvant, induced potent antibody responses to outer membrane protein PSSP-1, and type III secretion system proteins IpaB and IpaC. Intranasal immunization with the vaccine preparation elicited cross-protective immunity against S. flexneri 2a, S. flexneri 3a, S. flexneri 6, and Shigella sonnei in a mouse pneumonia model. Thus, S. flexneri 2a Δwzy represents a promising candidate strain for a universal Shigella vaccine.

18.
J Immunol Res ; 2018: 9830701, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29707588

RESUMO

Potential use of cholera toxin (CT) as a mucosal vaccine adjuvant has been documented in a variety of animal models. However, native CT is highly toxic to be used as a mucosal adjuvant in humans. Here, we demonstrate a new approach to generate a mucosal adjuvant by replacing the B subunit of CT with HIV-1 Tat protein transduction domain (PTD), which efficiently delivers fusion proteins into the cell cytoplasm by unspecific binding to cell surface. We compared the adjuvanticity and toxicity of Tat PTD-CTA1-Tat PTD (TCTA1T) with those of CT. Our results indicate that intranasal (i.n.) delivery of ovalbumin (OVA) with TCTA1T significantly augments the OVA-specific systemic and mucosal antibody responses to levels comparable to those seen with CT adjuvant. Moreover, in vivo cytotoxic T lymphocyte activity elicited by TCTA1T was significantly higher than that elicited by a mutant TCTA1T (TmCTA1T) lacking ADP-ribosyltransferase function. In addition, coadministration of influenza M2 protein with TCTA1T conferred near complete protection against lethal influenza virus challenge. Importantly, TCTA1T, in contrast to CT, did not induce serum IgG antibody responses to itself and was shown to be nontoxic. These results suggest that TCTA1T may be a safe and effective adjuvant when given by mucosal routes.


Assuntos
Toxina da Cólera/genética , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Pulmão/imunologia , Infecções por Orthomyxoviridae/imunologia , Proteínas Recombinantes de Fusão/genética , Linfócitos T/imunologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Adjuvantes Imunológicos , Animais , Autoanticorpos/sangue , Células Cultivadas , Citotoxicidade Imunológica , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Vacinação , Proteínas da Matriz Viral/imunologia
19.
Heliyon ; 4(1): e00519, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29560435

RESUMO

BACKGROUND: Assessing immune response after rotavirus vaccination consists in measuring serum or plasma IgA and IgG antibodies, but these assays provide very little information about the mucosal immune response. Thus the development of assays for detection of mucosal immune response following rotavirus vaccination is essential. We evaluate to assess circulating antibody-secreting cells (ASCs) as a potential means to evaluate mucosal immune responses to rotavirus vaccine. METHODS: 372 subjects, aged 6 weeks, were enrolled in the study. All the subjects were assigned to receive two doses of Rotarix® vaccine. Using a micro-modified whole blood-based ELISPOT assay, circulating rotavirus type-specific IgA- and IgG-ASCs, including gut homing ß7+ ASCs, were enumerated on week 6 before the first dose of Rotarix vaccination at 7 weeks of age and week 18 after the second vaccination at 17 weeks of age. Plasma samples collected before vaccination, and after two doses of Rotarix® vaccination were tested for plasma rotavirus IgA titers. RESULTS: Two doses of Rotarix® provided to induce sero-protective titer of ≥ 20 Units in 35% of subjects. Total blood IgA- ASC responses were detected in 26.4% of subjects who were non-responder before vaccination. Among responders, 47% of the subjects also have sero-protective plasma IgA titers. DISCUSSION: Our results suggest that virus-specific blood gut homing ASCs were detected and provide insight into mucosal immune response after rotavirus vaccination. Further studies are needed to evaluate the duration of such immune responses and to assess the programmatic utility of this whole blood-based mucosal ASC testing for the rotavirus immunization program.

20.
J Med Microbiol ; 56(Pt 11): 1460-1466, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17965345

RESUMO

The multilocus sequence typing scheme used previously for phylogenetic analysis of Escherichia coli was applied to 107 clinical isolates of Shigella flexneri. DNA sequencing of 3423 bp throughout seven housekeeping genes identified eight new allele types and ten new sequence types among the isolates. S. flexneri serotypes 1-5, X and Y were clustered together in a group containing many allelic variants while serotype 6 formed a distinct group, as previously established.


Assuntos
Técnicas de Tipagem Bacteriana , Disenteria Bacilar/microbiologia , Shigella flexneri/classificação , Shigella flexneri/isolamento & purificação , Alelos , Ásia , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , Genótipo , Humanos , Dados de Sequência Molecular , Análise de Sequência de DNA , Shigella flexneri/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa