Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(2): 021803, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35089766

RESUMO

We present a novel framework to solve simultaneously the electroweak-hierarchy problem and the strong-CP problem. A small but finite Higgs vacuum expectation value and a small θ angle are selected after the QCD phase transition, without relying on the Peccei-Quinn mechanism or other traditional solutions. We predict a distinctive pattern of correlated signals at hadronic EDM, fuzzy dark matter, and axion experiments.

2.
Phys Rev Lett ; 126(9): 091801, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33750171

RESUMO

We introduce a new approach to the Higgs naturalness problem. The Higgs mixes with the dilaton of a conformal field theory (CFT) sector whose true ground state has a large negative vacuum energy. If the Higgs vacuum expectation value is nonzero and below O(TeV), the CFT admits a second metastable vacuum, where the expansion history of the Universe is conventional. As a result, only Hubble patches with unnaturally small values of the Higgs mass do not immediately crunch. The main experimental prediction of this mechanism is a dilaton in the 0.1-10 GeV range that mixes with the Higgs and can be detected at future colliders and experiments searching for weakly coupled particles.

3.
Phys Rev Lett ; 124(15): 151801, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32357019

RESUMO

If dark matter was produced in the early Universe by the decoupling of its annihilations into known particles, there is a sharp experimental target for the size of its coupling. We show that if dark matter was produced by inelastic scattering against a lighter particle from the thermal bath, then its coupling can be exponentially smaller than the coupling required for its production from annihilations. As an application, we demonstrate that dark matter produced by inelastic scattering against electrons provides new thermal relic targets for direct detection and fixed target experiments.

4.
Phys Rev Lett ; 124(1): 011801, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31976725

RESUMO

We propose a new strategy to directly detect light particle dark matter that has long-ranged interactions with ordinary matter. The approach involves distorting the local flow of dark matter with time-varying fields and measuring these distortions with shielded resonant detectors. We apply this idea to sub-MeV dark matter particles with very small electric charges or coupled to a light vector mediator, including the freeze-in parameter space targeted by low mass direct detection efforts. This approach can probe dark matter masses ranging from 10 MeV to below a meV, extending beyond the capabilities of existing and proposed direct detection experiments.

5.
Phys Rev Lett ; 119(6): 061102, 2017 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-28949628

RESUMO

We propose that the dark matter abundance is set by the decoupling of inelastic scattering instead of annihilations. This coscattering mechanism is generically realized if dark matter scatters against states of comparable mass from the thermal bath. Coscattering points to dark matter that is exponentially lighter than the weak scale and has a suppressed annihilation rate, avoiding stringent constraints from indirect detection. Dark matter upscatters into states whose late decays can lead to observable distortions to the blackbody spectrum of the cosmic microwave background.

6.
Phys Rev Lett ; 117(25): 251801, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-28036199

RESUMO

We present a new solution to the electroweak hierarchy problem. We introduce N copies of the standard model with varying values of the Higgs mass parameter. This generically yields a sector whose weak scale is parametrically removed from the cutoff by a factor of 1/sqrt[N]. Ensuring that reheating deposits a majority of the total energy density into this lightest sector requires a modification of the standard cosmological history, providing a powerful probe of the mechanism. Current and near-future experiments can explore much of the natural parameter space. Furthermore, supersymmetric completions that preserve grand unification predict superpartners with mass below m_{W}M_{pl}/M_{GUT}∼10 TeV.

7.
Phys Rev Lett ; 115(6): 061301, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26296106

RESUMO

Dark matter (DM) may be a thermal relic that annihilates into heavier states in the early universe. This forbidden DM framework accommodates a wide range of DM masses from keV to weak scales. An exponential hierarchy between the DM mass and the weak scale follows from the exponential suppression of the thermally averaged cross section. Stringent constraints from the cosmic microwave background are evaded because annihilations turn off at late times. We provide an example where DM annihilates into dark photons, which is testable through large DM self-interactions and direct detection.

8.
Eur Phys J C Part Fields ; 82(3): 275, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399984

RESUMO

We show how to deal with uncertainties on the Standard Model predictions in an agnostic new physics search strategy that exploits artificial neural networks. Our approach builds directly on the specific Maximum Likelihood ratio treatment of uncertainties as nuisance parameters for hypothesis testing that is routinely employed in high-energy physics. After presenting the conceptual foundations of our method, we first illustrate all aspects of its implementation and extensively study its performances on a toy one-dimensional problem. We then show how to implement it in a multivariate setup by studying the impact of two typical sources of experimental uncertainties in two-body final states at the LHC.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa