Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(11): e1010114, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34843584

RESUMO

Malaria is a hazardous disease caused by Plasmodium parasites and often results in lethal complications, including malaria-associated acute respiratory distress syndrome (MA-ARDS). Parasite sequestration in the microvasculature is often observed, but its role in malaria pathogenesis and complications is still incompletely understood. We used skeleton binding protein-1 (SBP-1) KO parasites to study the role of sequestration in experimental MA-ARDS. The sequestration-deficiency of these SBP-1 KO parasites was confirmed with bioluminescence imaging and by measuring parasite accumulation in the lungs with RT-qPCR. The SBP-1 KO parasites induced similar lung pathology in the early stage of experimental MA-ARDS compared to wildtype (WT) parasites. Strikingly, the lung pathology resolved subsequently in more than 60% of the SBP-1 KO infected mice, resulting in prolonged survival despite the continuous presence of the parasite. This spontaneous disease resolution was associated with decreased inflammatory cytokine expression measured by RT-qPCR and lower expression of cytotoxic markers in pathogenic CD8+ T cells in the lungs of SBP-1 KO infected mice. These data suggest that SBP-1-mediated parasite sequestration and subsequent high parasite load are not essential for the development of experimental MA-ARDS but inhibit the resolution of the disease.


Assuntos
Pulmão/parasitologia , Malária/complicações , Proteínas de Membrana/deficiência , Plasmodium berghei/patogenicidade , Proteínas de Protozoários/metabolismo , Síndrome do Desconforto Respiratório/prevenção & controle , Animais , Progressão da Doença , Feminino , Pulmão/metabolismo , Pulmão/patologia , Malária/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Protozoários/genética , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/parasitologia , Síndrome do Desconforto Respiratório/patologia
2.
NPJ Vaccines ; 8(1): 29, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864042

RESUMO

Although natural killer (NK) cells have been studied in connection with dendritic cell (DC)-based vaccination in the field of cancer immunology, their role has barely been addressed in the context of therapeutic vaccination against HIV-1. In this study, we evaluated whether a therapeutic DC-based vaccine consisting of monocyte-derived DCs electroporated with Tat, Rev and Nef encoding mRNA affects NK cell frequency, phenotype and functionality in HIV-1-infected individuals. Although the frequency of total NK cells did not change, we observed a significant increase in cytotoxic NK cells following immunisation. In addition, significant changes in the NK cell phenotype associated with migration and exhaustion were observed together with increased NK cell-mediated killing and (poly)functionality. Our results show that DC-based vaccination has profound effects on NK cells, which highlights the importance of evaluating NK cells in future clinical trials looking at DC-based immunotherapy in the context of HIV-1 infection.

3.
Pharmaceutics ; 14(7)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35890284

RESUMO

A major determinant for the success of mRNA-based vaccines is the composition of the nanoparticles (NPs) used for formulation and delivery. Cationic peptides represent interesting candidate carriers for mRNA, since they have been shown to efficiently deliver nucleic acids to eukaryotic cells. mRNA NPs based on arginine-rich peptides have previously been demonstrated to induce potent antigen-specific CD8+ T-cell responses. We therefore compared the histidine-rich amphipathic peptide LAH4-L1 (KKALLAHALHLLALLALHLAHALKKA) to the fully substituted arginine variant (LAH4-L1R) for their capacity to formulate mRNA and transfect dendritic cells (DCs). Although both peptides encapsulated mRNA to the same extent, and showed excellent uptake in DCs, the gene expression level was significantly higher for LAH4-L1. The LAH4-L1-mRNA NPs also resulted in enhanced antigen presentation in the context of MHC I compared to LAH4-L1R in primary murine CD103+ DCs. Both peptides induced DC maturation and inflammasome activation. Subsequent ex vivo stimulation of OT-I splenocytes with transfected CD103+ DCs resulted in a high proportion of polyfunctional CD8+ T cells for both peptides. In addition, in vivo immunization with LAH4-L1 or LAH4-L1R-mRNA NPs resulted in proliferation of antigen-specific T cells. In conclusion, although LAH4-L1 outperformed LAH4-L1R in terms of transfection efficiency, the immune stimulation ex vivo and in vivo was equally efficient.

4.
AIDS ; 36(13): 1761-1768, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36172869

RESUMO

OBJECTIVES: Suppression of viral replication in patients on antiretroviral therapy (ART) is determined by plasma viral load (pVL) measurement. Whenever pVL reaches values below the limit of quantification, the qualitative parameter 'target detected' or 'target not detected' is available but often not reported to the clinician. We investigated whether qualitative pVL measurements can be used to estimate the viral reservoir size. DESIGN: The study recruited 114 people with HIV (PWH) who are stable on ART between 2016 and 2018. The percentage of pVL measurements qualitatively reported as 'target detected' (PTD) within a 2-year period was calculated. METHODS: t-DNA and US-RNA were used to estimate viral reservoir size and were quantified on peripheral blood mononuclear cells (PBMCs) using droplet digital PCR. RESULTS: A median of 6.5 pVL measurements over a 2-year period was evaluated for each participant to calculate PTD. A positive correlation was found between t-DNA and PTD (r = 0.24; P = 0.011) but not between US-RNA and PTD (r = 0.1; P = 0.3). A significantly lower PTD was observed in PWH with a small viral reservoir, as estimated by t-DNA less than 66 copies/106 PBMCs and US-RNA less than 10 copies/106 PBMCs, compared with PWH with a larger viral reservoir (P = 0.001). We also show that t-DNA is detectable whenever PTD is higher than 56% and that ART regimen does not affect PTD. CONCLUSION: Our study shows that PTD provides an efficient parameter to preselect participants with a small viral reservoir based on already available pVL data for future HIV cure trials.


Assuntos
Infecções por HIV , DNA Viral/análise , Infecções por HIV/tratamento farmacológico , Humanos , Leucócitos Mononucleares , Plasma/química , RNA , RNA Viral , Carga Viral
5.
J Control Release ; 330: 1016-1033, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33181204

RESUMO

Over the last few years, immunotherapy for HIV in general and therapeutic vaccination in particular, has received a tremendous boost, both in preclinical research and in clinical applications. This interest is based on the evidence that the immune system plays a crucial role in controlling HIV infection, as shown for long-term non-progressors and elite controllers, and that immune responses can be manipulated towards targeting conserved epitopes. So far, the most successful approach has been vaccination with autologous dendritic cells (DCs) loaded ex vivo with antigens and activation signals. Although this approach offers much promise, it also comes with significant drawbacks such as the requirement of a specialized infrastructure and expertise, as well as major challenges for logistics and storage, making it extremely time consuming and costly. Therefore, methods are being developed to avoid the use of ex vivo generated, autologous DCs. One of these methods is based on mRNA for therapeutic vaccination. mRNA has proven to be a very promising vaccine platform, as the coding information for any desired protein, including antigens and activation signals, can be generated in a very short period of time, showing promise both as an off-the-shelf therapy and as a personalized approach. However, an important drawback of this approach is the short half-life of native mRNA, due to the presence of ambient RNases. In addition, proper immunization requires that the antigens are expressed, processed and presented at the right immunological site (e.g. the lymphoid tissues). An ambivalent aspect of mRNA as a vaccine is its capacity to induce type I interferons, which can have beneficial adjuvant effects, but also deleterious effects on mRNA stability and translation. Thus, proper formulation of the mRNA is crucially important. Many approaches for RNA formulation have already been tested, with mixed success. In this review we discuss the state-of-the-art and future trends for mRNA-nanoparticle formulations for HIV vaccination, both in the prophylactic and in the therapeutic setting.


Assuntos
Vacinas Anticâncer , Infecções por HIV , Células Dendríticas , Infecções por HIV/prevenção & controle , Humanos , RNA Mensageiro , Vacinação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa