Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nature ; 572(7767): 131-135, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31316205

RESUMO

Pathogen-associated molecular patterns (PAMPs) activate innate immunity in both animals and plants. Although calcium has long been recognized as an essential signal for PAMP-triggered immunity in plants, the mechanism of PAMP-induced calcium signalling remains unknown1,2. Here we report that calcium nutrient status is critical for calcium-dependent PAMP-triggered immunity in plants. When calcium supply is sufficient, two genes that encode cyclic nucleotide-gated channel (CNGC) proteins, CNGC2 and CNGC4, are essential for PAMP-induced calcium signalling in Arabidopsis3-7. In a reconstitution system, we find that the CNGC2 and CNGC4 proteins together-but neither alone-assemble into a functional calcium channel that is blocked by calmodulin in the resting state. Upon pathogen attack, the channel is phosphorylated and activated by the effector kinase BOTRYTIS-INDUCED KINASE1 (BIK1) of the pattern-recognition receptor complex, and this triggers an increase in the concentration of cytosolic calcium8-10. The CNGC-mediated calcium entry thus provides a critical link between the pattern-recognition receptor complex and calcium-dependent immunity programs in the PAMP-triggered immunity signalling pathway in plants.


Assuntos
Arabidopsis/imunologia , Arabidopsis/metabolismo , Calmodulina/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Moléculas com Motivos Associados a Patógenos/imunologia , Imunidade Vegetal/imunologia , Animais , Proteínas de Arabidopsis/agonistas , Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio , Calmodulina/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/agonistas , Canais de Cátion Regulados por Nucleotídeos Cíclicos/antagonistas & inibidores , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Feminino , Imunidade Inata , Oócitos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Xenopus
2.
Plant Physiol ; 192(2): 1168-1182, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36960567

RESUMO

Rice (Oryza sativa) is of paramount importance for global nutrition, supplying at least 20% of global calories. However, water scarcity and increased drought severity are anticipated to reduce rice yields globally. We explored stomatal developmental genetics as a mechanism for improving drought resilience in rice while maintaining yield under climate stress. CRISPR/Cas9-mediated knockouts of the positive regulator of stomatal development STOMAGEN and its paralog EPIDERMAL PATTERNING FACTOR-LIKE10 (EPFL10) yielded lines with ∼25% and 80% of wild-type stomatal density, respectively. epfl10 lines with moderate reductions in stomatal density were able to conserve water to similar extents as stomagen lines but did not suffer from the concomitant reductions in stomatal conductance, carbon assimilation, or thermoregulation observed in stomagen knockouts. Moderate reductions in stomatal density achieved by editing EPFL10 present a climate-adaptive approach for safeguarding yield in rice. Editing the paralog of STOMAGEN in other species may provide a means for tuning stomatal density in agriculturally important crops beyond rice.


Assuntos
Oryza , Estômatos de Plantas , Estômatos de Plantas/fisiologia , Resistência à Seca , Fotossíntese/genética , Secas
3.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34215692

RESUMO

Plant diseases are among the major causes of crop yield losses around the world. To confer disease resistance, conventional breeding relies on the deployment of single resistance (R) genes. However, this strategy has been easily overcome by constantly evolving pathogens. Disabling susceptibility (S) genes is a promising alternative to R genes in breeding programs, as it usually offers durable and broad-spectrum disease resistance. In Arabidopsis, the S gene DMR6 (AtDMR6) encodes an enzyme identified as a susceptibility factor to bacterial and oomycete pathogens. Here, we present a model-to-crop translational work in which we characterize two AtDMR6 orthologs in tomato, SlDMR6-1 and SlDMR6-2. We show that SlDMR6-1, but not SlDMR6-2, is up-regulated by pathogen infection. In agreement, Sldmr6-1 mutants display enhanced resistance against different classes of pathogens, such as bacteria, oomycete, and fungi. Notably, disease resistance correlates with increased salicylic acid (SA) levels and transcriptional activation of immune responses. Furthermore, we demonstrate that SlDMR6-1 and SlDMR6-2 display SA-5 hydroxylase activity, thus contributing to the elucidation of the enzymatic function of DMR6. We then propose that SlDMR6 duplication in tomato resulted in subsequent subfunctionalization, in which SlDMR6-2 specialized in balancing SA levels in flowers/fruits, while SlDMR6-1 conserved the ability to fine-tune SA levels during pathogen infection of the plant vegetative tissues. Overall, this work not only corroborates a mechanism underlying SA homeostasis in plants, but also presents a promising strategy for engineering broad-spectrum and durable disease resistance in crops.


Assuntos
Resistência à Doença/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Homologia de Sequência de Aminoácidos , Solanum lycopersicum/imunologia , Proteínas de Arabidopsis/metabolismo , Biocatálise , Regulação da Expressão Gênica de Plantas , Gentisatos/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Mutação/genética , Filogenia , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ácido Salicílico/metabolismo , Transcriptoma/genética , Regulação para Cima , Xanthomonas/fisiologia
5.
PLoS Genet ; 8(2): e1002502, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22359513

RESUMO

Hyaloperonospora arabidopsidis (Hpa) is an obligate biotroph oomycete pathogen of the model plant Arabidopsis thaliana and contains a large set of effector proteins that are translocated to the host to exert virulence functions or trigger immune responses. These effectors are characterized by conserved amino-terminal translocation sequences and highly divergent carboxyl-terminal functional domains. The availability of the Hpa genome sequence allowed the computational prediction of effectors and the development of effector delivery systems enabled validation of the predicted effectors in Arabidopsis. In this study, we identified a novel effector ATR39-1 by computational methods, which was found to trigger a resistance response in the Arabidopsis ecotype Weiningen (Wei-0). The allelic variant of this effector, ATR39-2, is not recognized, and two amino acid residues were identified and shown to be critical for this loss of recognition. The resistance protein responsible for recognition of the ATR39-1 effector in Arabidopsis is RPP39 and was identified by map-based cloning. RPP39 is a member of the CC-NBS-LRR family of resistance proteins and requires the signaling gene NDR1 for full activity. Recognition of ATR39-1 in Wei-0 does not inhibit growth of Hpa strains expressing the effector, suggesting complex mechanisms of pathogen evasion of recognition, and is similar to what has been shown in several other cases of plant-oomycete interactions. Identification of this resistance gene/effector pair adds to our knowledge of plant resistance mechanisms and provides the basis for further functional analyses.


Assuntos
Arabidopsis/genética , Simulação por Computador , Regulação da Expressão Gênica de Plantas , Oomicetos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Imunidade Inata/genética , Modelos Genéticos , Modelos Moleculares , Oomicetos/patogenicidade
6.
Proc Natl Acad Sci U S A ; 109(28): E1972-9, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22699502

RESUMO

Cassava bacterial blight (CBB), incited by Xanthomonas axonopodis pv. manihotis (Xam), is the most important bacterial disease of cassava, a staple food source for millions of people in developing countries. Here we present a widely applicable strategy for elucidating the virulence components of a pathogen population. We report Illumina-based draft genomes for 65 Xam strains and deduce the phylogenetic relatedness of Xam across the areas where cassava is grown. Using an extensive database of effector proteins from animal and plant pathogens, we identify the effector repertoire for each sequenced strain and use a comparative sequence analysis to deduce the least polymorphic of the conserved effectors. These highly conserved effectors have been maintained over 11 countries, three continents, and 70 y of evolution and as such represent ideal targets for developing resistance strategies.


Assuntos
Manihot/metabolismo , Manihot/microbiologia , Doenças das Plantas/microbiologia , Análise de Sequência de DNA/métodos , Xanthomonas axonopodis/metabolismo , Área Sob a Curva , Progressão da Doença , Genoma Bacteriano , Genômica , Geografia , Imunidade Inata , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Doenças das Plantas/genética , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único , Fatores de Tempo
7.
Mol Plant Microbe Interact ; 27(11): 1186-98, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25083909

RESUMO

The gene-for-gene concept has historically been applied to describe a specific resistance interaction wherein single genes from the host and the pathogen dictate the outcome. These interactions have been observed across the plant kingdom and all known plant microbial pathogens. In recent years, this concept has been extended to susceptibility phenotypes in the context of transcription activator-like (TAL) effectors that target SWEET sugar transporters. However, because this interaction has only been observed in rice, it was not clear whether the gene-for-gene susceptibility was unique to that system. Here, we show, through a combined systematic analysis of the TAL effector complement of Xanthomonas axonopodis pv. manihotis and RNA sequencing to identify targets in cassava, that TAL20Xam668 specifically induces the sugar transporter MeSWEET10a to promote virulence. Designer TAL effectors (dTALE) complement TAL20Xam668 mutant phenotypes, demonstrating that MeSWEET10a is a susceptibility gene in cassava. Sucrose uptake-deficient X. axonopodis pv. manihotis bacteria do not lose virulence, indicating that sucrose may be cleaved extracellularly and taken up as hexoses into X. axonopodis pv. manihotis. Together, our data suggest that pathogen hijacking of plant nutrients is not unique to rice blight but also plays a role in bacterial blight of the dicot cassava.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação da Expressão Gênica de Plantas , Manihot/microbiologia , Doenças das Plantas/microbiologia , Xanthomonas axonopodis/patogenicidade , Proteínas de Bactérias/genética , Resistência à Doença , Expressão Gênica , Manihot/genética , Manihot/imunologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Doenças das Plantas/imunologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Sequência de RNA , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/microbiologia , Regulação para Cima , Virulência , Xanthomonas axonopodis/genética
8.
PLoS Pathog ; 7(12): e1002408, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22144898

RESUMO

Effectors of the bacterial type III secretion system provide invaluable molecular probes to elucidate the molecular mechanisms of plant immunity and pathogen virulence. In this report, we focus on the AvrBs2 effector protein from the bacterial pathogen Xanthomonas euvesicatoria (Xe), the causal agent of bacterial spot disease of tomato and pepper. Employing homology-based structural analysis, we generate a three-dimensional structural model for the AvrBs2 protein and identify catalytic sites in its putative glycerolphosphodiesterase domain (GDE). We demonstrate that the identified catalytic region of AvrBs2 was able to functionally replace the GDE catalytic site of the bacterial glycerophosphodiesterase BhGlpQ cloned from Borrelia hermsii and is required for AvrBs2 virulence. Mutations in the GDE catalytic domain did not disrupt the recognition of AvrBs2 by the cognate plant resistance gene Bs2. In addition, AvrBs2 activation of Bs2 suppressed subsequent delivery of other Xanthomonas type III effectors into the host plant cells. Investigation of the mechanism underlying this modulation of the type III secretion system may offer new strategies to generate broad-spectrum resistance to bacterial pathogens.


Assuntos
Proteínas de Bactérias/química , Modelos Moleculares , Fatores de Virulência/química , Xanthomonas/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/fisiologia , Capsicum/microbiologia , Solanum lycopersicum/microbiologia , Mutação , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Estrutura Terciária de Proteína , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Xanthomonas/genética , Xanthomonas/metabolismo , Xanthomonas/patogenicidade
9.
PLoS Pathog ; 7(12): e1002428, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22194684

RESUMO

The oomycete Hyaloperonospora arabidopsidis (Hpa) is the causal agent of downy mildew on the model plant Arabidopsis thaliana and has been adapted as a model system to investigate pathogen virulence strategies and plant disease resistance mechanisms. Recognition of Hpa infection occurs when plant resistance proteins (R-genes) detect the presence or activity of pathogen-derived protein effectors delivered to the plant host. This study examines the Hpa effector ATR13 Emco5 and its recognition by RPP13-Nd, the cognate R-gene that triggers programmed cell death (HR) in the presence of recognized ATR13 variants. Herein, we use NMR to solve the backbone structure of ATR13 Emco5, revealing both a helical domain and a disordered internal loop. Additionally, we use site-directed and random mutagenesis to identify several amino acid residues involved in the recognition response conferred by RPP13-Nd. Using our structure as a scaffold, we map these residues to one of two surface-exposed patches of residues under diversifying selection. Exploring possible roles of the disordered region within the ATR13 structure, we perform domain swapping experiments and identify a peptide sequence involved in nucleolar localization. We conclude that ATR13 is a highly dynamic protein with no clear structural homologues that contains two surface-exposed patches of polymorphism, only one of which is involved in RPP13-Nd recognition specificity.


Assuntos
Proteínas Nucleares/química , Oomicetos/patogenicidade , Sequência de Aminoácidos , Arabidopsis/parasitologia , Proteínas de Arabidopsis/metabolismo , Nucléolo Celular/metabolismo , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oomicetos/genética , Estrutura Secundária de Proteína , Virulência/genética
10.
Plant Cell ; 22(7): 2444-58, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20601497

RESUMO

Activation of plant immunity relies on recognition of pathogen effectors by several classes of plant resistance proteins. To discover the underlying molecular mechanisms of effector recognition by the Arabidopsis thaliana RECOGNITION OF PERONOSPORA PARASITICA1 (RPP1) resistance protein, we adopted an Agrobacterium tumefaciens-mediated transient protein expression system in tobacco (Nicotiana tabacum), which allowed us to perform coimmunoprecipitation experiments and mutational analyses. Herein, we demonstrate that RPP1 associates with its cognate effector ARABIDOPSIS THALIANA RECOGNIZED1 (ATR1) in a recognition-specific manner and that this association is a prerequisite step in the induction of the hypersensitive cell death response of host tissue. The leucine-rich repeat (LRR) domain of RPP1 mediates the interaction with ATR1, while the Toll/Interleukin1 Receptor (TIR) domain facilitates the induction of the hypersensitive cell death response. Additionally, we demonstrate that mutations in the TIR and nucleotide binding site domains, which exhibit loss of function for the induction of the hypersensitive response, are still able to associate with the effector in planta. Thus, our data suggest molecular epistasis between signaling activity of the TIR domain and the recognition function of the LRR and allow us to propose a model for ATR1 recognition by RPP1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Leucina/química , Oomicetos/fisiologia , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/química , Mutação , Nicotiana/genética
11.
Theor Appl Genet ; 126(3): 601-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23117718

RESUMO

The RXopJ4 resistance locus from the wild accession Solanum pennellii (Sp) LA716 confers resistance to bacterial spot disease of tomato (S. lycopersicum, Sl) caused by Xanthomonas perforans (Xp). RXopJ4 resistance depends on recognition of the pathogen type III effector protein XopJ4. We used a collection of Sp introgression lines (ILs) to narrow the RXopJ4 locus to a 4.2-Mb segment on the long arm of chromosome 6, encompassed by the ILs 6-2 and 6-2-2. We then adapted or developed a collection of 14 molecular markers to map on a segregating F(2) population from a cross between the susceptible parent Sl FL8000 and the resistant parent RXopJ4 8000 OC(7). In the F(2) population, a 190-kb segment between the markers J350 and J352 cosegregated with resistance. This fine mapping will enable both the identification of candidate genes and the detection of resistant plants using cosegregating markers. The RXopJ4 resistance gene(s), in combination with other recently characterized genes and a quantitative trait locus (QTL) for bacterial spot disease resistance, will likely be an effective tool for the development of durable resistance in cultivated tomato.


Assuntos
Mapeamento Cromossômico , Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Solanum/genética , Cromossomos de Plantas , DNA de Plantas/genética , Genes de Plantas , Marcadores Genéticos , Fenótipo , Doenças das Plantas/microbiologia , Análise de Sequência de DNA , Solanum/microbiologia , Xanthomonas/isolamento & purificação
12.
Proc Natl Acad Sci U S A ; 105(3): 1091-6, 2008 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-18198274

RESUMO

Phytopathogenic oomycetes cause some of the most devastating diseases affecting agricultural crops. Hyaloperonospora parasitica is a native oomycete pathogen of Arabidopsis and is related to other oomycete phytopathogens that include several species of Phytophthora, including the causal agent of potato late blight. Recently, four oomycete effector genes have been isolated, and several oomycete genomes have been sequenced. We have developed an efficient and genetically amenable system to test putative effector genes using the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. The H. parasitica effector protein ATR13 was delivered via P. syringae by fusing the ATR13 gene with the avrRpm1 type three secretion signal peptide, a bacterial sequence that allows transfer of proteins into the host cell through the bacterial type III secretion system. We also inserted ATR13 into the genome of the turnip mosaic virus, a single-stranded RNA virus. Our results show that delivery of ATR13 via the bacterial or viral pathogen triggers defense responses in plants containing the cognate resistance protein RPP13(Nd), which restricts proliferation of both pathogens. Hence, recognition of ATR13 by RPP13 initiates defense responses that are effective against oomycete, bacterial and viral pathogens, pointing to a common defense mechanism. We have characterized regions of the RPP13(Nd) resistance protein that are essential for effector recognition and/or downstream signaling, using transient coexpression in Nicotiana benthamiana.


Assuntos
Proteínas de Algas/metabolismo , Vírus do Mosaico/fisiologia , Oomicetos/fisiologia , Doenças das Plantas/imunologia , Pseudomonas syringae/fisiologia , Proteínas de Algas/genética , Alelos , Apoptose , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Expressão Gênica , Vírus do Mosaico/genética , Vírus do Mosaico/patogenicidade , Oomicetos/genética , Oomicetos/patogenicidade , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Pseudomonas syringae/genética , Nicotiana/citologia , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo
13.
Dev Cell ; 3(2): 291-7, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12194859

RESUMO

Mitogen-activated protein kinase (MAPK) cascades are rapidly activated upon plant recognition of invading pathogens. Here, we describe the use of virus-induced gene silencing (VIGS) to study the role of candidate plant MAP kinase kinase kinase (MAPKKK) homologs of human MEKK1 in pathogen-resistance pathways. We demonstrate that silencing expression of a tobacco MAPKKK, Nicotiana Protein Kinase 1 (NPK1), interferes with the function of the disease-resistance genes N, Bs2, and Rx, but does not affect Pto- and Cf4-mediated resistance. Further, NPK1-silenced plants also exhibit reduced cell size, defective cytokinesis, and an overall dwarf phenotype. Our results provide evidence that NPK1 functions in the regulation of N-, Bs2-, and Rx-mediated resistance responses and may play a role in one or more MAPK cascades, regulating multiple cellular processes.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Inativação Gênica/fisiologia , Sistema Imunitário/enzimologia , Imunidade Inata/imunologia , MAP Quinase Quinase Quinase 1 , MAP Quinase Quinase Quinases/imunologia , Nicotiana/enzimologia , Doenças das Plantas , Proteínas de Plantas/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Tamanho Celular/genética , Vetores Genéticos/genética , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/metabolismo , Homologia de Sequência do Ácido Nucleico , Transdução de Sinais/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/imunologia , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/imunologia
14.
Front Microbiol ; 6: 535, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26089818

RESUMO

Bacterial spot disease of pepper and tomato is caused by four distinct Xanthomonas species and is a severely limiting factor on fruit yield in these crops. The genetic diversity and the type III effector repertoires of a large sampling of field strains for this disease have yet to be explored on a genomic scale, limiting our understanding of pathogen evolution in an agricultural setting. Genomes of 67 Xanthomonas euvesicatoria (Xe), Xanthomonas perforans (Xp), and Xanthomonas gardneri (Xg) strains isolated from diseased pepper and tomato fields in the southeastern and midwestern United States were sequenced in order to determine the genetic diversity in field strains. Type III effector repertoires were computationally predicted for each strain, and multiple methods of constructing phylogenies were employed to understand better the genetic relationship of strains in the collection. A division in the Xp population was detected based on core genome phylogeny, supporting a model whereby the host-range expansion of Xp field strains on pepper is due, in part, to a loss of the effector AvrBsT. Xp-host compatibility was further studied with the observation that a double deletion of AvrBsT and XopQ allows a host range expansion for Nicotiana benthamiana. Extensive sampling of field strains and an improved understanding of effector content will aid in efforts to design disease resistance strategies targeted against highly conserved core effectors.

15.
PLoS One ; 6(12): e28765, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22194907

RESUMO

Interactions between Arabidopsis thaliana and its native obligate oomycete pathogen Hyaloperonospora arabidopsidis (Hpa) represent a model system to study evolution of natural variation in a host/pathogen interaction. Both Arabidopsis and Hpa genomes are sequenced and collections of different sub-species are available. We analyzed ∼400 interactions between different Arabidopsis accessions and five strains of Hpa. We examined the pathogen's overall ability to reproduce on a given host, and performed detailed cytological staining to assay for pathogen growth and hypersensitive cell death response in the host. We demonstrate that intermediate levels of resistance are prevalent among Arabidopsis populations and correlate strongly with host developmental stage. In addition to looking at plant responses to challenge by whole pathogen inoculations, we investigated the Arabidopsis resistance attributed to recognition of the individual Hpa effectors, ATR1 and ATR13. Our results suggest that recognition of these effectors is evolutionarily dynamic and does not form a single clade in overall Arabidopsis phylogeny for either effector. Furthermore, we show that the ultimate outcome of the interactions can be modified by the pathogen, despite a defined gene-for-gene resistance in the host. These data indicate that the outcome of disease and disease resistance depends on genome-for-genome interactions between the host and its pathogen, rather than single gene pairs as thought previously.


Assuntos
Arabidopsis/imunologia , Arabidopsis/microbiologia , Evolução Biológica , Resistência à Doença/imunologia , Interações Hospedeiro-Patógeno , Peronospora/fisiologia , Doenças das Plantas/microbiologia , Alelos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cotilédone/microbiologia , Ecótipo , Peronospora/crescimento & desenvolvimento , Fenótipo , Filogenia , Folhas de Planta/microbiologia , Proteínas Proto-Oncogênicas c-myb/metabolismo , Especificidade da Espécie , Esporos/fisiologia , Coloração e Rotulagem
16.
Nat Biotechnol ; 28(4): 365-9, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20231819

RESUMO

Plant diseases cause massive losses in agriculture. Increasing the natural defenses of plants may reduce the impact of phytopathogens on agricultural productivity. Pattern-recognition receptors (PRRs) detect microbes by recognizing conserved pathogen-associated molecular patterns (PAMPs). Although the overall importance of PAMP-triggered immunity for plant defense is established, it has not been used to confer disease resistance in crops. We report that activity of a PRR is retained after its transfer between two plant families. Expression of EFR (ref. 4), a PRR from the cruciferous plant Arabidopsis thaliana, confers responsiveness to bacterial elongation factor Tu in the solanaceous plants Nicotiana benthamiana and tomato (Solanum lycopersicum), making them more resistant to a range of phytopathogenic bacteria from different genera. Our results in controlled laboratory conditions suggest that heterologous expression of PAMP recognition systems could be used to engineer broad-spectrum disease resistance to important bacterial pathogens, potentially enabling more durable and sustainable resistance in the field.


Assuntos
Fenômenos Fisiológicos Bacterianos , Imunidade Inata/fisiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/microbiologia , Plantas Geneticamente Modificadas/fisiologia , Receptores de Reconhecimento de Padrão/metabolismo , Doenças das Plantas/prevenção & controle , Receptores de Reconhecimento de Padrão/genética
17.
Plant Cell ; 18(10): 2782-91, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17012600

RESUMO

Recognition of pathogens by plants involves the coordinated efforts of molecular chaperones, disease resistance (R) proteins, and components of disease resistance signaling pathways. Characterization of events associated with pathogen perception in Arabidopsis thaliana has advanced understanding of molecular genetic mechanisms associated with disease resistance and protein interactions critical for the activation of resistance signaling. Regulation of R protein-mediated signaling in response to the bacterial pathogen Pseudomonas syringae in Arabidopsis involves the physical association of at least two R proteins with the negative regulator RPM1 INTERACTING PROTEIN4 (RIN4). While the RIN4-RPS2 (for RESISTANCE TO P. SYRINGAE2) and RIN4-RPM1 (for RESISTANCE TO P. SYRINGAE PV MACULICOLA1) signaling pathways exhibit differential mechanisms of activation in terms of effector action, the requirement for NON-RACE-SPECIFIC DISEASE RESISTANCE1 (NDR1) is shared. Using a yeast two-hybrid screen, followed by a series of coimmunoprecipitation experiments, we demonstrate that the RIN4-NDR1 interaction occurs on the cytoplasmically localized N-terminal portion of NDR1 and that this interaction is required for the activation of resistance signaling following infection by P. syringae expressing the Cys protease Type III effector protein AvrRpt2. We demonstrate that like RPS2 and RPM1, NDR1 also associates with RIN4 in planta. We suggest that this interaction serves to further regulate activation of disease resistance signaling following recognition of P. syringae DC3000-AvrRpt2 by Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Pseudomonas syringae/patogenicidade , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Sequência de Bases , Primers do DNA , Eletroforese em Gel de Poliacrilamida , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular , Dados de Sequência Molecular , Mutagênese , Ligação Proteica , Técnicas do Sistema de Duplo-Híbrido
18.
Proc Natl Acad Sci U S A ; 103(47): 18002-7, 2006 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-17071740

RESUMO

RNA interference, mediated by small interfering RNAs (siRNAs), is a conserved regulatory process that has evolved as an antiviral defense mechanism in plants and animals. It is not known whether host cells also use siRNAs as an antibacterial defense mechanism in eukaryotes. Here, we report the discovery of an endogenous siRNA, nat-siRNAATGB2, that is specifically induced by the bacterial pathogen Pseudomonas syringae carrying effector avrRpt2. We demonstrate that the biogenesis of this siRNA requires DCL1, HYL1, HEN1, RDR6, NRPD1A, and SGS3. Its induction also depends on the cognate host disease resistance gene RPS2 and the NDR1 gene that is required for RPS2-specified resistance. This siRNA contributes to RPS2-mediated race-specific disease resistance by repressing PPRL, a putative negative regulator of the RPS2 resistance pathway.


Assuntos
Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Bactérias/metabolismo , Pseudomonas syringae/patogenicidade , RNA Interferente Pequeno/metabolismo , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Plantas Geneticamente Modificadas , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo
19.
Proc Natl Acad Sci U S A ; 102(6): 2087-92, 2005 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-15684089

RESUMO

During infection of Arabidopsis thaliana, the bacterium Pseudomonas syringae pv tomato delivers the effector protein AvrRpt2 into the plant cell cytosol. Within the plant cell, AvrRpt2 undergoes N-terminal processing and causes elimination of Arabidopsis RIN4. Previous work established that AvrRpt2 is a putative cysteine protease, and AvrRpt2 processing and RIN4 elimination require an intact predicted catalytic triad in that AvrRpt2. In this work, proteolytic events that depend on AvrRpt2 activity were characterized. The amino acid sequence surrounding the processing site of AvrRpt2 and two related sequences from RIN4 triggered Avr-Rpt2-dependent proteolytic cleavage of a synthetic substrate, demonstrating that these sequences are cleavage recognition sites for AvrRpt2 activity. Processing-deficient AvrRpt2 mutants were identified and shown to retain their ability to eliminate wild-type RIN4. Single amino acid substitutions were made in each of the two RIN4 cleavage sites, and mutation of both sites resulted in cleavage-resistant RIN4. Growth of Pseudomonas expressing AvrRpt2 was significantly higher than catalytically inactive mutants on Arabidopsis rin4/rps2 mutant plants, suggesting there are additional protein targets of AvrRpt2 that account for the virulence activity of this effector. Bioinformatics analysis identified putative Arabidopsis proteins containing sequences similar to the proteolytic cleavage sites conserved in AvrRpt2 and RIN4. Several of these proteins were eliminated in an AvrRpt2-dependent manner in a transient in planta expression system. These results identify amino acids important for AvrRpt2 substrate recognition and cleavage as well as demonstrate AvrRpt2 protease activity eliminates multiple Arabidopsis proteins in a transient expression system.


Assuntos
Proteínas de Bactérias/metabolismo , Pseudomonas syringae/metabolismo , Sequência de Aminoácidos , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Transporte/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Dados de Sequência Molecular , Alinhamento de Sequência
20.
Plant Cell ; 17(4): 1268-78, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15749757

RESUMO

Pepper plants (Capsicum annuum) containing the Bs2 resistance gene are resistant to strains of Xanthomonas campestris pv vesicatoria (Xcv) expressing the bacterial effector protein AvrBs2. AvrBs2 is delivered directly to the plant cell via the type III protein secretion system (TTSS) of Xcv. Upon recognition of AvrBs2 by plants expressing the Bs2 gene, a signal transduction cascade is activated leading to a bacterial disease resistance response. Here, we describe a novel pathosystem that consists of epitope-tagged Bs2-expressing transgenic Nicotiana benthamiana plants and engineered strains of Pseudomonas syringae pv tabaci that deliver the effector domain of the Xcv AvrBs2 protein via the TTSS of P. syringae. This pathosystem has allowed us to exploit N. benthamiana as a model host plant to use Agrobacterium tumefaciens-mediated transient protein expression in conjunction with virus-induced gene silencing to validate genes and to identify protein interactions required for the expression of plant host resistance. In this study, we demonstrate that two genes, NbSGT1 and NbNPK1, are required for the Bs2/AvrBs2-mediated resistance responses but that NbRAR1 is not. Protein localization studies in these plants indicate that full-length Bs2 is primarily localized in the plant cytoplasm. Three protein domains of Bs2 have been identified: the N terminus, a central nucleotide binding site, and a C-terminal Leu-rich repeat (LRR). Co-immunoprecipitation studies demonstrate that separate epitope-tagged Bs2 domain constructs interact in trans specifically in the plant cell. Co-immunoprecipitation studies also demonstrate that an NbSGT1-dependent intramolecular interaction is required for Bs2 function. Additionally, Bs2 has been shown to associate with SGT1 via the LRR domain of Bs2. These data suggest a role for SGT1 in the proper folding of Bs2 or the formation of a Bs2-SGT1-containing protein complex that is required for the expression of bacterial disease resistance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Imunidade Inata/genética , Nicotiana/metabolismo , Proteínas de Plantas , Proteínas de Ciclo Celular/genética , Citoplasma/metabolismo , Epitopos/metabolismo , Vetores Genéticos/genética , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Substâncias Macromoleculares/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia , Ligação Proteica/fisiologia , Dobramento de Proteína , Estrutura Terciária de Proteína/genética , Pseudomonas syringae/genética , Pseudomonas syringae/metabolismo , Nicotiana/genética , Nicotiana/microbiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa