Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(5): e17318, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38771091

RESUMO

Amphibians and fishes play a central role in shaping the structure and function of freshwater environments. These organisms have a limited capacity to disperse across different habitats and the thermal buffer offered by freshwater systems is small. Understanding determinants and patterns of their physiological sensitivity across life history is, therefore, imperative to predicting the impacts of climate change in freshwater systems. Based on a systematic literature review including 345 experiments with 998 estimates on 96 amphibian (Anura/Caudata) and 93 freshwater fish species (Teleostei), we conducted a quantitative synthesis to explore phylogenetic, ontogenetic, and biogeographic (thermal adaptation) patterns in upper thermal tolerance (CTmax) and thermal acclimation capacity (acclimation response ratio, ARR) as well as the influence of the methodology used to assess these thermal traits using a conditional inference tree analysis. We found globally consistent patterns in CTmax and ARR, with phylogeny (taxa/order), experimental methodology, climatic origin, and life stage as significant determinants of thermal traits. The analysis demonstrated that CTmax does not primarily depend on the climatic origin but on experimental acclimation temperature and duration, and life stage. Higher acclimation temperatures and longer acclimation times led to higher CTmax values, whereby Anuran larvae revealed a higher CTmax than older life stages. The ARR of freshwater fishes was more than twice that of amphibians. Differences in ARR between life stages were not significant. In addition to phylogenetic differences, we found that ARR also depended on acclimation duration, ramping rate, and adaptation to local temperature variability. However, the amount of data on early life stages is too small, methodologically inconsistent, and phylogenetically unbalanced to identify potential life cycle bottlenecks in thermal traits. We, therefore, propose methods to improve the robustness and comparability of CTmax/ARR data across species and life stages, which is crucial for the conservation of freshwater biodiversity under climate change.


Assuntos
Aclimatação , Anfíbios , Peixes , Água Doce , Aquecimento Global , Animais , Aclimatação/fisiologia , Peixes/fisiologia , Anfíbios/fisiologia , Anfíbios/crescimento & desenvolvimento , Filogenia , Mudança Climática , Temperatura
2.
J Fish Biol ; 101(4): 822-833, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35737847

RESUMO

Impacts of global warming and CO2 -related ocean acidification (OA) on fish reproduction may include chronic effects on gametogenesis and gamete quality, as well as acute effects on external fertilisation. Here, temperature thresholds and OA-sensitivity of gametogenesis and fertilisation were investigated in Atlantic cod, Gadus morhua. Three broodstock groups of farmed cod (FC 1-3) were exposed for 3 months to three maturation conditions (FC 1: control, 6°C/400 µatm CO2 ; FC 2: warming, 9.5°C/400 µatm; FC 3: warming and OA, 9.5°C/1100 µatm). In addition, a broodstock group of wild cod (WC) was kept at control conditions to compare the acute temperature window of fertilisation with that of farmed cod (FC 1). Fertilisations were conducted in a temperature-gradient table at 10 temperatures (between -1.5 and 12°C) and two CO2 levels (400/1100 µatm). In FC 1 and WC, fertilisation success was relatively high between 0.5°C and 11°C (TRange of c. 10.5°C), indicating similar gamete quality in farmed and wild broodstocks kept at control conditions. Exposure of farmed broodstocks to warming (FC 2) and the combination of warming and OA (FC 3) impaired gamete quality, causing a reduction in fertilisation success of -20% (FC 2) and - 42% (FC 3) compared to FC 1. The acute temperature window of fertilisation narrowed from FC 1 (TRange  = 10.4°C) to FC 2 (TRange  = 8.8°C) and FC 3 (TRange  = 5.9°C). Acute effects of CO2 on fertilisation success were not significant. This study demonstrates potential climate change impacts on gametogenesis and fertilisation in Atlantic cod, suggesting the loss of spawning habitat in the coming decades.


Assuntos
Gadus morhua , Animais , Temperatura , Concentração de Íons de Hidrogênio , Dióxido de Carbono , Água do Mar , Células Germinativas , Fertilização
3.
J Exp Biol ; 223(Pt 11)2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32366687

RESUMO

The vulnerability of fish embryos and larvae to environmental factors is often attributed to a lack of adult-like organ systems (gills) and thus insufficient homeostatic capacity. However, experimental data supporting this hypothesis are scarce. Here, by using Atlantic cod (Gadus morhua) as a model, the relationship between embryo vulnerability (to projected ocean acidification and warming) and homeostatic capacity was explored through parallel analyses of stage-specific mortality and in vitro activity and expression of major ion pumps (ATP-synthase, Na+/K+-ATPase, H+-ATPase) and co-transporters (NBC1, NKCC1). Immunolocalization of these transporters was used to study ionocyte morphology in newly hatched larvae. Treatment-related embryo mortality until hatching (+20% due to acidification and warming) occurred primarily during an early period (gastrulation) characterized by extremely low ion transport capacity. Thereafter, embryo mortality decreased in parallel with an exponential increase in activity and expression of all investigated ion transporters. Significant changes in transporter activity and expression in response to acidification (+15% activity) and warming (-30% expression) indicate some potential for short-term acclimatization, although this is probably associated with energetic trade-offs. Interestingly, whole-larvae enzyme activity (supported by abundant epidermal ionocytes) reached levels similar to those previously measured in gill tissue of adult cod, suggesting that early-life stages without functional gills are better equipped in terms of ion homeostasis than previously thought. This study implies that the gastrulation period represents a critical transition from inherited (maternal) defenses to active homeostatic regulation, which facilitates enhanced resilience of later stages to environmental factors.


Assuntos
Gadus morhua , Água do Mar , Animais , Brânquias , Homeostase , Concentração de Íons de Hidrogênio , Temperatura
4.
Glob Chang Biol ; 24(1): 526-535, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28755499

RESUMO

Productivity of marine fish stocks is known to be affected by environmental and ecological drivers, and global climate change is anticipated to alter recruitment success of many stocks. While the direct effects of environmental drivers on fish early life stage survival can be quantified experimentally, indirect effects in marine ecosystems and the role of adaptation are still highly uncertain. We developed an integrative model for the effects of ocean warming and acidification on the early life stages of Atlantic cod in the Barents Sea, termed SCREI (Simulator of Cod Recruitment under Environmental Influences). Experimental results on temperature and CO2 effects on egg fertilization, egg and larval survival and development times are incorporated. Calibration using empirical time series of egg production, temperature, food and predator abundance reproduces age-0 recruitment over three decades. We project trajectories of recruitment success under different scenarios and quantify confidence limits based on variation in experiments. A publicly accessible web version of the SCREI model can be run under www.oceanchange.uni-bremen.de/;SCREI. Severe reductions in average age-0 recruitment success of Barents Sea cod are projected under uncompensated warming and acidification toward the middle to end of this century. Although high population stochasticity was found, considerable rates of evolutionary adaptation to acidification and shifts in organismal thermal windows would be needed to buffer impacts on recruitment. While increases in food availability may mitigate short-term impacts, an increase in egg production achieved by stock management could provide more long-term safety for cod recruitment success. The SCREI model provides a novel integration of multiple driver effects in different life stages and enables an estimation of uncertainty associated with interindividual and ecological variation. The model thus helps to advance toward an improved empirical foundation for quantifying climate change impacts on marine fish recruitment, relevant for ecosystem-based assessments of marine systems under climate change.


Assuntos
Mudança Climática , Ecossistema , Gadus morhua/fisiologia , Adaptação Fisiológica , Animais , Larva , Oceanos e Mares , Dinâmica Populacional , Reprodução , Temperatura
5.
Glob Chang Biol ; 23(4): 1499-1510, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27718513

RESUMO

Thermal tolerance windows serve as a powerful tool for estimating the vulnerability of marine species and their life stages to increasing temperature means and extremes. However, it remains uncertain to which extent additional drivers, such as ocean acidification, modify organismal responses to temperature. This study investigated the effects of CO2 -driven ocean acidification on embryonic thermal sensitivity and performance in Atlantic cod, Gadus morhua, from the Kattegat. Fertilized eggs were exposed to factorial combinations of two PCO2 conditions (400 µatm vs. 1100 µatm) and five temperature treatments (0, 3, 6, 9 and 12 °C), which allow identifying both lower and upper thermal tolerance thresholds. We quantified hatching success, oxygen consumption (MO2 ) and mitochondrial functioning of embryos as well as larval morphometrics at hatch and the abundance of acid-base-relevant ionocytes on the yolk sac epithelium of newly hatched larvae. Hatching success was high under ambient spawning conditions (3-6 °C), but decreased towards both cold and warm temperature extremes. Elevated PCO2 caused a significant decrease in hatching success, particularly at cold (3 and 0 °C) and warm (12 °C) temperatures. Warming imposed limitations to MO2 and mitochondrial capacities. Elevated PCO2 stimulated MO2 at cold and intermediate temperatures, but exacerbated warming-induced constraints on MO2 , indicating a synergistic interaction with temperature. Mitochondrial functioning was not affected by PCO2 . Increased MO2 in response to elevated PCO2 was paralleled by reduced larval size at hatch. Finally, ionocyte abundance decreased with increasing temperature, but did not differ between PCO2 treatments. Our results demonstrate increased thermal sensitivity of cod embryos under future PCO2 conditions and suggest that acclimation to elevated PCO2 requires reallocation of limited resources at the expense of embryonic growth. We conclude that ocean acidification constrains the thermal performance window of embryos, which has important implication for the susceptibility of cod to projected climate change.


Assuntos
Mudança Climática , Gadus morhua , Aclimatação , Animais , Concentração de Íons de Hidrogênio , Oceanos e Mares , Temperatura
6.
PLoS One ; 17(4): e0267228, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35436318

RESUMO

Fish embryos may be vulnerable to seawater acidification resulting from anthropogenic carbon dioxide (CO2) emissions or from excessive biological CO2 production in aquaculture systems. This study investigated CO2 effects on embryos of the European eel (Anguilla anguilla), a catadromous fish that is considered at risk from climate change and that is targeted for hatchery production to sustain aquaculture of the species. Eel embryos were reared in three independent recirculation systems with different pH/CO2 levels representing "control" (pH 8.1, 300 µatm CO2), end-of-century climate change ("intermediate", pH 7.6, 900 µatm CO2) and "extreme" aquaculture conditions (pH 7.1, 3000 µatm CO2). Sensitivity analyses were conducted at 4, 24, and 48 hours post-fertilization (hpf) by focusing on development, survival, and expression of genes related to acute stress response (crhr1, crfr2), stress/repair response (hsp70, hsp90), water and solute transport (aqp1, aqp3), acid-base regulation (nkcc1a, ncc, car15), and inhibitory neurotransmission (GABAAα6b, Gabra1). Results revealed that embryos developing at intermediate pH showed similar survival rates to the control, but egg swelling was impaired, resulting in a reduction in egg size with decreasing pH. Embryos exposed to extreme pH had 0.6-fold decrease in survival at 24 hpf and a 0.3-fold change at 48 compared to the control. These observed effects of acidification were not reflected by changes in expression of any of the here studied genes. On the contrary, differential expression was observed along embryonic development independent of treatment, indicating that the underlying regulating systems are under development and that embryos are limited in their ability to regulate molecular responses to acidification. In conclusion, exposure to predicted end-of-century ocean pCO2 conditions may affect normal development of this species in nature during sensitive early life history stages with limited physiological response capacities, while extreme acidification will negatively influence embryonic survival and development under hatchery conditions.


Assuntos
Anguilla , Dióxido de Carbono , Animais , Dióxido de Carbono/análise , Mudança Climática , Concentração de Íons de Hidrogênio , Água do Mar/química
7.
Science ; 369(6499): 65-70, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32631888

RESUMO

Species' vulnerability to climate change depends on the most temperature-sensitive life stages, but for major animal groups such as fish, life cycle bottlenecks are often not clearly defined. We used observational, experimental, and phylogenetic data to assess stage-specific thermal tolerance metrics for 694 marine and freshwater fish species from all climate zones. Our analysis shows that spawning adults and embryos consistently have narrower tolerance ranges than larvae and nonreproductive adults and are most vulnerable to climate warming. The sequence of stage-specific thermal tolerance corresponds with the oxygen-limitation hypothesis, suggesting a mechanistic link between ontogenetic changes in cardiorespiratory (aerobic) capacity and tolerance to temperature extremes. A logarithmic inverse correlation between the temperature dependence of physiological rates (development and oxygen consumption) and thermal tolerance range is proposed to reflect a fundamental, energetic trade-off in thermal adaptation. Scenario-based climate projections considering the most critical life stages (spawners and embryos) clearly identify the temperature requirements for reproduction as a critical bottleneck in the life cycle of fish. By 2100, depending on the Shared Socioeconomic Pathway (SSP) scenario followed, the percentages of species potentially affected by water temperatures exceeding their tolerance limit for reproduction range from ~10% (SSP 1-1.9) to ~60% (SSP 5-8.5). Efforts to meet ambitious climate targets (SSP 1-1.9) could therefore benefit many fish species and people who depend on healthy fish stocks.


Assuntos
Aclimatação , Mudança Climática , Peixes/crescimento & desenvolvimento , Estágios do Ciclo de Vida , Animais , Peixes/classificação , Temperatura Alta , Oxigênio/metabolismo , Consumo de Oxigênio , Filogenia
8.
Conserv Physiol ; 6(1): coy050, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30254749

RESUMO

Atlantic herring (Clupea harengus) is a benthic spawner, therefore its eggs are prone to encounter different water conditions during embryonic development, with bottom waters often depleted of oxygen and enriched in CO2. Some Atlantic herring spawning grounds are predicted to be highly affected by ongoing Ocean Acidification and Warming with water temperature increasing by up to +3°C and CO2 levels reaching ca. 1000 µatm (RCP 8.5). Although many studies investigated the effects of high levels of CO2 on the embryonic development of Atlantic herring, little is known about the combination of temperature and ecologically relevant levels of CO2. In this study, we investigated the effects of Ocean Acidification and Warming on embryonic metabolic and developmental performance such as mitochondrial function, respiration, hatching success (HS) and growth in Atlantic herring from the Oslo Fjord, one of the spawning grounds predicted to be greatly affected by climate change. Fertilized eggs were incubated under combinations of two PCO2 conditions (400 µatm and 1100 µatm) and three temperatures (6, 10 and 14°C), which correspond to current and end-of-the-century conditions. We analysed HS, oxygen consumption (MO2) and mitochondrial function of embryos as well as larval length at hatch. The capacity of the electron transport system (ETS) increased with temperature, reaching a plateau at 14°C, where the contribution of Complex I to the ETS declined in favour of Complex II. This relative shift was coupled with a dramatic increase in MO2 at 14°C. HS was high under ambient spawning conditions (6-10°C), but decreased at 14°C and hatched larvae at this temperature were smaller. Elevated PCO2 increased larval malformations, indicating sub-lethal effects. These results indicate that energetic limitations due to thermally affected mitochondria and higher energy demand for maintenance occur at the expense of embryonic development and growth.

9.
Sci Adv ; 4(11): eaas8821, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30498774

RESUMO

Rapid climate change in the Northeast Atlantic and Arctic poses a threat to some of the world's largest fish populations. Impacts of warming and acidification may become accessible through mechanism-based risk assessments and projections of future habitat suitability. We show that ocean acidification causes a narrowing of embryonic thermal ranges, which identifies the suitability of spawning habitats as a critical life-history bottleneck for two abundant cod species. Embryonic tolerance ranges linked to climate simulations reveal that ever-increasing CO2 emissions [Representative Concentration Pathway (RCP) 8.5] will deteriorate suitability of present spawning habitat for both Atlantic cod (Gadus morhua) and Polar cod (Boreogadus saida) by 2100. Moderate warming (RCP4.5) may avert dangerous climate impacts on Atlantic cod but still leaves few spawning areas for the more vulnerable Polar cod, which also loses the benefits of an ice-covered ocean. Emissions following RCP2.6, however, support largely unchanged habitat suitability for both species, suggesting that risks are minimized if warming is held "below 2°C, if not 1.5°C," as pledged by the Paris Agreement.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Gadus morhua/fisiologia , Aquecimento Global , Reprodução , Animais , Concentração de Íons de Hidrogênio , Oceanos e Mares , Salinidade
10.
Environ Pollut ; 218: 605-614, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27506648

RESUMO

Increasing anthropogenic activities in the Arctic represent an enhanced threat for oil pollution in a marine environment that is already at risk from climate warming. In particular, this applies to species with free-living pelagic larvae that aggregate in surface waters and under the sea ice where hydrocarbons are likely to remain for extended periods of time due to low temperatures. We exposed the positively buoyant eggs of polar cod (Boreogadus saida), an arctic keystone species, to realistic concentrations of a crude oil water-soluble fraction (WSF), mimicking exposure of eggs aggregating under the ice to oil WSF leaking from brine channels following encapsulation in ice. Total hydrocarbon and polycyclic aromatic hydrocarbon levels were in the ng/L range, with most exposure concentrations below the limits of detection throughout the experiment for all treatments. The proportion of viable, free-swimming larvae decreased significantly with dose and showed increases in the incidence and severity of spine curvature, yolk sac alterations and a reduction in spine length. These effects are expected to compromise the motility, feeding capacity, and predator avoidance during critical early life stages for this important species. Our results imply that the viability and fitness of polar cod early life stages is significantly reduced when exposed to extremely low and environmentally realistic levels of aqueous hydrocarbons, which may have important implications for arctic food web dynamics and ecosystem functioning.


Assuntos
Gadiformes , Hidrocarbonetos/análise , Poluição por Petróleo/análise , Petróleo/análise , Poluentes Químicos da Água/análise , Animais , Regiões Árticas , Temperatura Baixa , Ecossistema , Cadeia Alimentar , Gadiformes/crescimento & desenvolvimento , Larva , Óvulo , Hidrocarbonetos Policíclicos Aromáticos/análise , Sensibilidade e Especificidade , Água
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa