Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(3): E526-E535, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29288215

RESUMO

Germ-line specification is essential for sexual reproduction. In the ovules of most flowering plants, only a single hypodermal cell enlarges and differentiates into a megaspore mother cell (MMC), the founder cell of the female germ-line lineage. The molecular mechanisms restricting MMC specification to a single cell remain elusive. We show that the Arabidopsis transcription factor WRKY28 is exclusively expressed in hypodermal somatic cells surrounding the MMC and is required to repress these cells from acquiring MMC-like cell identity. In this process, the SWR1 chromatin remodeling complex mediates the incorporation of the histone variant H2A.Z at the WRKY28 locus. Moreover, the cytochrome P450 gene KLU, expressed in inner integument primordia, non-cell-autonomously promotes WRKY28 expression through H2A.Z deposition at WRKY28. Taken together, our findings show how somatic cells in ovule primordia cooperatively use chromatin remodeling to restrict germ-line cell specification to a single cell.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Ligação a DNA/genética , Histonas/genética , Histonas/metabolismo , Mutação , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/metabolismo , Componentes Aéreos da Planta/fisiologia , Raízes de Plantas/fisiologia , RNA de Plantas/genética , RNA de Plantas/metabolismo , Fatores de Transcrição/genética
2.
Exp Eye Res ; 200: 108254, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32961174

RESUMO

Ongoing research using cell transplantation and viral-mediated gene therapy has been making progress to restore vision by retinal repair, but targeted delivery and complete cellular integration remain challenging. An alternative approach is to induce endogenous Müller glia (MG) to regenerate lost neurons and photoreceptors, as occurs spontaneously in teleost fish and amphibians. Extracellular vesicles (EVs) can transfer protein and RNA cargo between cells serving as a novel means of cell-cell communication. We conducted an in vivo screen in zebrafish to identify sources of EVs that could induce MG to dedifferentiate and generate proliferating progenitor cells after intravitreal injection into otherwise undamaged zebrafish eyes. Small EVs (sEVs) from C6 glioma cells were the most consistent at inducing MG-derived proliferating cells. Ascl1a expression increased after intravitreal injection of C6 sEVs and knockdown of ascl1a inhibited the induction of proliferation. Proteomic and RNAseq analyses of EV cargo content were performed to begin to identify key factors that might target EVs to MG and initiate retina regeneration.


Assuntos
Vesículas Extracelulares , Neurogênese , Células Fotorreceptoras de Invertebrados/metabolismo , Proteômica/métodos , Retina/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Proliferação de Células , Células Cultivadas , Injeções , Células Fotorreceptoras de Invertebrados/citologia , Retina/citologia , Peixe-Zebra
3.
Brief Bioinform ; 17(1): 63-77, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25922372

RESUMO

RNA structure plays a crucial role in gene maturation, regulation and function. Determining the form and frequency of RNA folds is essential for a better understanding of how RNA exerts its functions. Low-throughput studies have focused on RNA primary sequences and expression levels, but with an emphasis on relatively small numbers of transcripts. However, with the recent advent of high-throughput technologies, it is realistic to begin analyzing RNA secondary structures on a genome-wide scale. Here, we review genome-wide RNA secondary structure profiles as well as advances in computational structure predictions. We further discuss the novel characteristics of RNA secondary structure across messenger RNAs. Probing RNA secondary structure by high-throughput sequencing will enable us to build atlases of RNA secondary structures, an important step in helping us to understand the versatility of RNA functions in diverse cellular processes.


Assuntos
Conformação de Ácido Nucleico , RNA/química , Algoritmos , Animais , Pareamento de Bases , Sequência de Bases , Biologia Computacional/métodos , Simulação por Computador , Bases de Dados de Ácidos Nucleicos/estatística & dados numéricos , Epigênese Genética , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Humanos , Aprendizado de Máquina , Modelos Moleculares , Filogenia , RNA/genética , RNA/metabolismo , Splicing de RNA , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA/estatística & dados numéricos , Processos Estocásticos , Termodinâmica
4.
Commun Biol ; 3(1): 500, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913289

RESUMO

Proper flower development is essential for sexual reproductive success and the setting of fruits and seeds. The availability of a high quality genome sequence for pineapple makes it an excellent model for studying fruit and floral organ development. In this study, we sequenced 27 different pineapple floral samples and integrated nine published RNA-seq datasets to generate tissue- and stage-specific transcriptomic profiles. Pairwise comparisons and weighted gene co-expression network analysis successfully identified ovule-, stamen-, petal- and fruit-specific modules as well as hub genes involved in ovule, fruit and petal development. In situ hybridization confirmed the enriched expression of six genes in developing ovules and stamens. Mutant characterization and complementation analysis revealed the important role of the subtilase gene AcSBT1.8 in petal development. This work provides an important genomic resource for functional analysis of pineapple floral organ growth and fruit development and sheds light on molecular networks underlying pineapple reproductive organ growth.


Assuntos
Ananas/genética , Proteínas de Plantas/genética , Reprodução/genética , Transcriptoma/genética , Sequência de Aminoácidos/genética , Ananas/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Sementes/genética
5.
Sci Rep ; 9(1): 6658, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31040312

RESUMO

Long noncoding RNAs (lncRNAs) have been identified in many mammals and plants and are known to play crucial roles in multiple biological processes. Pineapple is an important tropical fruit and a good model for studying the plant evolutionary adaptation to the dry environment and the crassulacean acid metabolism (CAM) photosynthesis strategy; however, the lncRNAs involved in CAM pathway remain poorly characterized. Here, we analyzed the available RNA-seq data sets derived from 26 pineapple leaf samples at 13 time points and identified 2,888 leaf lncRNAs, including 2,046 long intergenic noncoding RNAs (lincRNAs) and 842 long noncoding natural antisense transcripts (lncNATs). Pineapple leaf lncRNAs are expressed in a highly tissue-specific manner. Co-expression analysis of leaf lncRNA and mRNA revealed that leaf lncRNAs are preferentially associated with photosynthesis genes. We further identified leaf lncRNAs that potentially function as competing endogenous RNAs (ceRNAs) of two CAM photosynthesis pathway genes, PPCK and PEPC, and revealed their diurnal expression pattern in leaves. Moreover, we found that 48% of lncRNAs exhibit diurnal expression patterns in leaves, suggesting their important roles in CAM. This study conducted a comprehensive genome-wide analysis of leaf lncRNAs and identified their role in gene expression regulation of the CAM photosynthesis pathway in pineapple.


Assuntos
Ananas/genética , Ananas/metabolismo , Fotossíntese , Folhas de Planta/genética , Folhas de Planta/metabolismo , RNA Longo não Codificante , RNA de Plantas , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genoma de Planta , Genômica/métodos , Fases de Leitura Aberta , Especificidade de Órgãos , Fotossíntese/genética , RNA Longo não Codificante/genética
6.
Mol Plant ; 10(10): 1274-1292, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28951178

RESUMO

Deposition of the histone variant H2A.Z at gene bodies regulates transcription by modifying chromatin accessibility in plants. However, the role of H2A.Z enrichment at the promoter and enhancer regions is unclear, and how H2A.Z interacts with other mechanisms of chromatin modification to regulate gene expression remains obscure. Here, we mapped genome-wide H2A.Z, H3K4me3, H3K27me3, Pol II, and nucleosome occupancy in Arabidopsis inflorescence. We showed that H2A.Z preferentially associated with H3K4me3 at promoters, while it was found with H3K27me3 at enhancers, and that H2A.Z deposition negatively correlated with gene expression. In addition, we demonstrated that H2A.Z represses gene expression by establishing low gene accessibility at +1 nucleosome and maintaining high gene accessibility at -1 nucleosome. We further showed that the high measures of gene responsiveness correlate with the H2A.Z-associated closed +1 nucleosome structure. Moreover, we found that H2A.Z represses enhancer activity by promoting H3K27me3 and preventing H3K4me3 histone modifications. This study provides a framework for future studies of H2A.Z functions and opens up new aspects for decoding the interplay between chromatin modification and histone variants in transcriptional control.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Histonas/fisiologia , Nucleossomos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cromatina/metabolismo , Elementos Facilitadores Genéticos , Histonas/genética , Mutação , Nucleossomos/ultraestrutura , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo
7.
Brief Funct Genomics ; 14(2): 91-101, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24914100

RESUMO

A recent highlight of genomics research has been the discovery of many families of transcripts which have function but do not code for proteins. An important group is long noncoding RNAs (lncRNAs), which are typically longer than 200 nt, and whose members originate from thousands of loci across genomes. We review progress in understanding the biogenesis and regulatory mechanisms of lncRNAs. We describe diverse computational and high throughput technologies for identifying and studying lncRNAs. We discuss the current knowledge of functional elements embedded in lncRNAs as well as insights into the lncRNA-based regulatory network in animals. We also describe genome-wide studies of large amount of lncRNAs in plants, as well as knowledge of selected plant lncRNAs with a focus on biotic/abiotic stress-responsive lncRNAs.


Assuntos
Redes Reguladoras de Genes , Plantas/genética , RNA Longo não Codificante/genética , Animais , Sequência de Bases , Genoma/genética , Modelos Biológicos , Dados de Sequência Molecular , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa