RESUMO
The burden of depression is increasing worldwide, specifically in older adults. Unhealthy dietary patterns may partly explain this phenomenon. In the Spanish PREDIMED-Plus study, we explored (1) the cross-sectional association between the adherence to the Prime Diet Quality Score (PDQS), an a priori-defined high-quality food pattern, and the prevalence of depressive symptoms at baseline (cross-sectional analysis) and (2) the prospective association of baseline PDQS with changes in depressive symptomatology after 2 years of follow-up. After exclusions, we assessed 6612 participants in the cross-sectional analysis and 5523 participants in the prospective analysis. An energy-adjusted high-quality dietary score (PDQS) was assessed using a validated FFQ. The cross-sectional association between PDQS and the prevalence of depression or presence of depressive symptoms and the prospective changes in depressive symptoms were evaluated through multivariable regression models (logistic and linear models and mixed linear-effects models). PDQS was inversely associated with depressive status in the cross-sectional analysis. Participants in the highest quintile of PDQS (Q5) showed a significantly reduced odds of depression prevalence as compared to participants in the lowest quartile of PDQS (Q1) (OR (95 %) CI = 0·82 (0·68, 0·98))). The baseline prevalence of depression decreased across PDQS quintiles (Pfor trend = 0·015). A statistically significant association between PDQS and changes in depressive symptoms after 2-years follow-up was found (ß (95 %) CI = -0·67 z-score (-1·17, -0·18). A higher PDQS was cross-sectionally related to a lower depressive status. Nevertheless, the null finding in our prospective analysis raises the possibility of reverse causality. Further prospective investigation is required to ascertain the association between PDQS and changes in depressive symptoms along time.
Assuntos
Dieta Mediterrânea , Síndrome Metabólica , Humanos , Idoso , Depressão/epidemiologia , Estudos Transversais , Seguimentos , DietaRESUMO
SCOPE: The increased prevalence of cardiovascular diseases (CVDs) has been hypothesized to be the result of an increased exposure to a host of atherogenic environmental factors, paramount among them being unhealthy dietary habits. Long-chain n-3 polyunsaturated fatty acids (PUFAs) have been shown to have cardio protective effects, partially due to their ability to regulate gene expression. In this regard, increasing attention has been devoted to the role of miRNAs as regulators of multiple metabolic pathways whose deregulation has been associated with CVD risk. In this work we investigated whether miRNA expression was regulated by docosahexanoic acid, conjugated linoleic acid and cholesterol in Caco-2 cells. RESULTS: Among the modulated miRNAs, miR-107 was differentially expressed by all treatments and this modulation was independent of its hosting gene, panthothenate kinase 1, possibly through its own promoter, which contains binding sites for metabolically relevant transcription factors. Among the putative target genes of miR-107, we found some genes with key roles in circadian rhythm. Specifically, we demonstrated that binding of miR-107 to the circadian locomotor output cycles kaput gene results in the deregulation of the circadian rhythm of the cells. CONCLUSION: Since chronodisruption has been linked to metabolic disorders such as type 2 diabetes, atherosclerosis, obesity, and CVD, our findings suggest that miR-107 could represent a new approach for pharmacological treatment of these diseases.
RESUMO
SCOPE: The increased prevalence of cardiovascular diseases (CVDs) has been hypothesized to be the result of an increased exposure to a host of atherogenic environmental factors, paramount among them being unhealthy dietary habits. Long-chain n-3 polyunsaturated fatty acids have been shown to have cardio protective effects, partially due to their ability to regulate gene expression. In this regard, increasing attention has been devoted to the role of miRNAs as regulators of multiple metabolic pathways whose deregulation has been associated with CVD risk. METHODS AND RESULTS: In this work, we investigated whether miRNA expression was regulated by docosahexanoic acid, conjugated linoleic acid, and cholesterol in Caco-2 cells. The modulated miRNAs, miR-107 was differentially expressed by all treatments and this modulation was independent of its hosting gene, PANK1, possibly through its own promoter, which contains binding sites for metabolically relevant transcription factors. Among the putative target genes of miR-107, we found some genes with key roles in circadian rhythm. Specifically, we demonstrated that binding of miR-107 to the CLOCK gene results in the deregulation of the circadian rhythm of the cells. CONCLUSION: Since chronodisruption has been linked to metabolic disorders such as type 2 diabetes, atherosclerosis, obesity, and CVD, our findings suggests that miR-107 could represent a new approach for pharmacological treatment of these diseases.