Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Environ Manage ; 302(Pt B): 114115, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34800773

RESUMO

Waterworks which utilise river bank filtration water sources often have to apply aeration and sand filtration to remove iron and manganese during the drinking water treatment process. After some time, the sand becomes saturated and the spent filter sand (SFS) must be disposed of and replaced. In order to valorize this waste stream, this paper investigates the reuse of SFS as an adsorbent for the treatment of arsenic contaminated drinking water. The arsenic removal performance of SFS is compared with two synthetic iron oxide coated sands (IOCS). The sorbents were first characterized by SEM, EDS, BET specific surface area, and point of zero charge (pHpzc) measurements, and then investigated under a variety of conditions. The surface of the SFS was revealed to be coated with iron manganese binary oxide. The Freundlich model best described the isotherm experiment data, indicating a non monolayer adsorption model for arsenic adsorption on the three IOCS investigated. As(III) and As(V) removals were negatively effected by the presence of PO43- and HA anions as they competed with the arsenic species for adsorption sites. However, given the status of SFS as a waste material, the results obtained in this paper suggest it may be successfully reused as a very economically and environmentally sustainable solution for small waterworks requiring both As(V) and As(III) removal during drinking water treatment.


Assuntos
Arsênio , Água Potável , Poluentes Químicos da Água , Arsênio/análise , Ferro , Manganês , Areia , Poluentes Químicos da Água/análise
2.
J Environ Manage ; 258: 110019, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31929060

RESUMO

Only seven regional MSWLF in Serbia are considered sanitary, while about 3500 landfills operate without proper pollution control. This paper presents a unique opportunity to evaluate the impact of a closed landfill, and a new sanitary landfill, which are located next to each other. The following methodologies for the landfill impact assessment were applied, based on data from 2012 to 2017: Landfill water pollution index (LWPI) and Nemerow index (PIGW) for groundwater, and the geo-accumulation (Igeo) and ecological risk (ERi) indices and several PAH ratios for soil. The performance of the leachate control system was evaluated using two adapted pollution indices: LPI and the Nemerow index (PIL). According to the obtained LWPI and PIGW values, the quality of groundwater at the new landfill is improving (LWPI = 1.05-2.62; PIGW = 0.52-1.29), while no significant changes were observed for the old landfill (LWPI = 3.06-5.13; PIGW = 2.03-4.78). High concentrations of ammonia nitrogen (1.01-22.74 mg/l), Fe (0.76-57.11 mg/l), Ni (5.80-230.09 µg/l), Pb (4.2-202.4 µg/l) and ∑PAH16 (150.93-189.55 ng/l) show the strong influence of the landfill on the groundwater quality at the old landfill, indicating the need for additional remediation action. High concentrations of Ni (21.9-133.0 mg/kg) and Cr (8.5-277.0 mg/kg) in the analyzed soil compared to other studies, as well as moderate Igeo values (IgeoNi = 0.36-1.88; IgeoCr = -1.20-1.52), raise concern and suggest the need for further monitoring. The high ERi (158.6-295.0) and Igeo values (0.91-2.30) of Hg show significant potential ecological risk. LPI and PIL values for early methanogenic phase leachate demonstrates the need to improve the leachate treatment system. The monitoring data and applied pollution indices indicate that Cr and As should be added to the EU Watch List of emerging substances, at least regarding EU potential candidate countries.


Assuntos
Eliminação de Resíduos , Poluentes Químicos da Água , Monitoramento Ambiental , Sérvia , Resíduos Sólidos , Instalações de Eliminação de Resíduos
3.
Artigo em Inglês | MEDLINE | ID: mdl-30688160

RESUMO

Granular activated carbon (GAC) was modified with Fe-Mn binary oxide to produce a novel effective hybrid adsorbent (GAC-FeMn) for simultaneous removal of As(III) and As(V) from water. After characterization (including BET, SEM/EDS and XRD analyses) of the raw and modified GAC, FTIR analysis before and after As removal showed that ligand exchange was the major mechanism for As removal on GAC-FeMn. Sorption kinetics followed pseudo-second order kinetics for both As(III) and As(V) and were not controlled by intraparticle diffusion. Batch equilibrium experiments yielded adsorption capacities for As(III) and As(V) of 2.87 and 2.30 mg/g, and demonstrated that better sorption was achieved at low pH. Of the competitive anions investigated (PO43-, SiO32-, CO32-, SO42-, NO3-, Cl-), phosphate had the greatest negative effect on As(III) and As(V) adsorption. Three sorption/desorption cycles were conducted in continuous column tests with a real arsenic contaminated groundwater, with subsequent TCLP leaching tests confirming the stability of the spent sorbent. In the column tests, breakthrough curves were also obtained for phosphates, which were present at a relatively high concentration (1.33 mg/L) in the investigated groundwater. The phosphates limited the effective operational bed life of GAC-FeMn for arsenic removal. Nonetheless, the maximum arsenic adsorption capacities for GAC-FeMn obtained by the Thomas model during the three sorption cycles were high, ranging from 18.8 to 29.8 mg/g, demonstrating that even under high phosphate loads, with further process improvements, GAC-FeMn may provide an excellent solution for the economic removal of arsenic from real groundwaters.


Assuntos
Arsênio/análise , Carvão Vegetal/química , Ferro/química , Manganês/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Água Subterrânea/química , Concentração de Íons de Hidrogênio , Cinética , Óxidos/química , Fosfatos/análise
4.
J Environ Manage ; 214: 9-16, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29518600

RESUMO

Due to the anaerobic nature of aquatic sediments, the anaerobic treatment of sediments utilizing already present microflora represents an interesting treatment option. Contaminated sediment can contain a variety of organic contaminants, with easily degradable organics usually present in the higher amounts, along with traces of specific organic pollutants (total petroleum hydrocarbons and polycyclic aromatic hydrocarbons). This study applies a comprehensive approach to contaminated sediment treatment which covers all the organic contaminants present in the sediment. The aim of this study was to (1) evaluate the anaerobic treatment of aquatic sediment highly loaded with easily degradable organics via determination of potential biogas and methane production, and (2) assess possibilities of using anaerobic treatment for the degradation of specific organic pollutants in order to reduce the risks posed by the sediment. In order to promote the methanogenic conditions of the indigenous microflora in the sediment, the addition of co-substrates acetate and glucose was investigated. The results, expressed as mL biogas produced per volatile solids content in sediment (VSadded) indicate that the addition of the co-substrate has a significant impact on biogas production potential (58.7 and 55.1 mL/g VSadded for acetate and glucose co-substrate addition respectively, and 14.6 mL/g VSadded for the treatment without co-substrate addition). Theoretical biochemical methane potential was assessed by Gompertz model and Chemical oxygen demand model. The Gompertz model fit better for all the applied treatments, and was capable of predicting the final productivity of biogas and methane in the first 30 days with a relative error of less than 14%. From the aspects of specific organic pollutants, total petroleum hydrocarbon degradation was promoted by co-substrate addition (degradations of 75% and 60% achieved by acetate and glucose co-substrate addition, compared to 45% for the treatment without co-substrate addition). Polycyclic aromatic hydrocarbons were reduced by significant amounts (84-87%) in all the applied treatments, but the addition of co-substrate did not further improve their degradation.


Assuntos
Biodegradação Ambiental , Sedimentos Geológicos/química , Hidrocarbonetos Policíclicos Aromáticos , Biocombustíveis , Metano , Petróleo
5.
Water Sci Technol ; 77(1-2): 439-447, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29377828

RESUMO

Evaluation of the bioavailable fractions of organic contaminants such as polycyclic aromatic hydrocarbons (PAHs) is extremely important for assessing their risk to the environment. This available fraction, which can be solubilised and/or easily extracted, is believed to be the most accessible for bioaccumulation, biosorption and/or transformation. Sediment organic matter (OM) and clay play an important role in the biodegradation and bioavailability of PAHs. The strong association of PAHs with OM and clay in sediments has a great influence not only on their distribution but also on their long-term environmental impact. This paper investigates correlations between bioavailability and the clay and OM contents in sediments. The results show that OM is a better sorbent for pyrene (chosen as a model PAH) and that increasing the OM content reduces the bioavailable fraction. A mathematical model was used to predict the kinetic desorption, and these results showed that the sediment with the lowest content of OM had an Ffast value of 24%, whereas sediment with 20% OM gave a value of 9%. In the experiments with sediments with different clay contents, no clear dependence between clay and rate constants of the fast desorbing fractions was observed, which can be explained by the numerous possible interactions at the molecular level.


Assuntos
Silicatos de Alumínio/química , Sedimentos Geológicos/química , Substâncias Húmicas/análise , Modelos Teóricos , Pirenos/análise , Poluentes Químicos da Água/análise , Adsorção , Biodegradação Ambiental , Disponibilidade Biológica , Argila
6.
Water Environ Res ; 89(7): 663-671, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28641675

RESUMO

In this study, solar cells were used to generate an electric field for the electrokinetic remediation of metal contaminated sediment (Nickel, Cadmium, Zinc). For determination of metals mobility, bioavailability and potential toxicity, sequential extraction procedure, simultaneously extracted metals (SEM) and acid-volatile sulphide ratios (AVS) were performed before, during and after treatment.After 21 days of treatment, 63% Ni, 82% Cd and 58% Zn was removed from the anode region. The application of the electric field changed the chemical composition of the sediments. The risk assessment analysis based on pseudo total metals content, the risk assessment code and the relationship between SEM and AVS, indicates that a simple singular approach for risk assessment analysis and evaluation of the quality of sediments is not enough.


Assuntos
Técnicas Eletroquímicas , Poluentes Ambientais/química , Sedimentos Geológicos , Metais/química , Energia Solar
7.
J Environ Manage ; 182: 149-159, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27472051

RESUMO

Surface sediments were subject to systematic long-term monitoring (2002-2014) in the Republic of Serbia (Province of Vojvodina). Eight heavy metals (Ni, Zn, Cd, Cr, Cu, Pb, As and Hg), mineral oils (total petroleum hydrocarbons), 16 EPA PAHs, selected pesticides and polychlorinated biphenyls (PCB) were monitored. As part of this research, this paper presents a sediment contamination spatial and temporal trend study of diverse pollution sources and the ecological risk status of the alluvial sediments of Carska Bara at three representative sampling sites (S1S3), in order to establish the status of contamination and recommend substances of interest for more widespread future monitoring. Multivariate statistical methods including factor analysis of principal component analysis (PCA/FA), Pearson correlation and several synthetic indicators were used to evaluate the extent and origin of contamination (anthropogenic or natural, geogenic sources) and potential ecological risks. Hg, Cd, As, mineral oils and PAHs (dominated by dibenzo(a,h)anthracene and benzo(a)pyrene, contributing 85.7% of the total) are derived from several anthropogenic sources, whereas Ni, Cu, Cr and Zn are convincingly of geogenic origin, and exhibit dual origins. Cd and Hg significantly raise the levels of potential ecological risk for all sampling locations, demonstrating the effect of long-term bioaccumulation and biomagnification. Pb is isolated from the other parameters, implying unique sources. This research suggests four heavy metals (Zn, Cr, Cu and As) and dibenzo(a,h)anthracene be added to the list of priority pollutants within the context of the application of the European Water Framework Directive (WFD), in accordance with significant national and similar environmental data from countries in the region.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Metais Pesados/química , Compostos Orgânicos/química , Poluentes Químicos da Água/química , Conservação dos Recursos Naturais , Humanos , Análise de Componente Principal , Medição de Risco , Sérvia , Nações Unidas
8.
ScientificWorldJournal ; 2014: 234654, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24526885

RESUMO

Pyrite ash (PA) is created by burning pyrite in the chemical production of sulphuric acid. The high concentration of iron oxide, mostly hematite, present in pyrite ash, gives the basis for its application as a source of catalytic iron in a modified Fenton process for anthraquinone dye reactive blue 4 (RB4) degradation. The effect of various operating variables such as catalyst and oxidant concentration, initial pH and RB4 concentration on the abatement of total organic carbon, and dye has been assessed in this study. Here we show that degradation of RB4 in the modified Fenton reaction was efficient under the following conditions: pH=2.5; [PA]0=0.2 g L(-1); [H2O2]0=5 mM and initial RB4 concentration up to 100 mg L(-1). The pyrite ash Fenton reaction can overcome limitations observed from the classic Fenton reaction, such as the early termination of the Fenton reaction. Metal (Pb, Zn, and Cu) content of the solution after the process suggests that an additional treatment step is necessary to remove the remaining metals from the water. These results provide basic knowledge to better understand the modified, heterogeneous Fenton process and apply the PA Fenton reaction for the treatment of wastewaters which contains anthraquinone dyes.


Assuntos
Antraquinonas/química , Corantes/química , Ferro/química , Sulfetos/química , Catálise , Peróxido de Hidrogênio/química , Cinética , Oxirredução
9.
Environ Eng Sci ; 30(12): 719-724, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24381480

RESUMO

Enhanced electrokinetic (EK) removal of Cr, Cu, and Zn from sediment by using original and modified integrated ion exchange (IIX™) cathodes was investigated. IIX cathode design and EK device process modifications were made to improve performance: separation of IIX cathode components (IIXS), combination of modified IIX cathode with pulsed electric field (IIXSP), and separation of IIX cathode components with addition of an anion exchange resin compartment (IIXA). After using the IIXSP, overall Cr, Cu, and Zn removal efficacies were significantly improved compared with the other treatments investigated. No improvements in overall Cr, Cu, and Zn removal efficacies were achieved by utilization of IIXA. Nevertheless, significant removal efficacies occurred at the anode region since distribution of the alkaline front was prevented. However, metal accumulation in the cathode region occurred. This was a consequence of metal cation complexation with Cl- released from the anion exchange resin that changed the direction of metal migration. Enhancing EK remediation of Cr-, Cu-, and Zn-contaminated sediment can be achieved by using a modified IIX cathode.

10.
J Environ Manage ; 118: 153-60, 2013 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-23428464

RESUMO

Natural organic matter (NOM) in raw water can contribute in many ways to the poor quality of drinking water, including the formation of disinfection byproducts such as trihalomethanes (THM) and haloacetic acids (HAA) during disinfection. This paper investigates the role of individual NOM fractions on changes in THM and HAA formation during coagulation with iron chloride (FeCl3) and a combination of polyaluminium chloride and iron chloride (FeCl3/PACl). The dissolved organic carbon (DOC) in the raw water and after coagulation was fractionated into four fractions, based on their hydrophobicity. Fractionation showed that most of the DOC (68%) in the raw water comes from the fulvic acid fraction, yielding 41% of the total THM precursors and 21% of the total HAA precursors. Both coagulants remove the humic acid fraction, but result in different changes to the reactivity of the remaining NOM fractions towards THM and HAA formation, indicating that coagulation occurs by different pathways, depending upon the type of coagulant used. In particular, significant changes in the reactivities of the hydrophilic acidic and non-acidic fractions were observed.


Assuntos
Acetatos/química , Cloroacetatos/química , Substâncias Húmicas/análise , Trialometanos/química , Purificação da Água , Hidróxido de Alumínio/química , Cromatografia , Água Potável/química , Compostos Ferrosos/química , Espectrofotometria Ultravioleta , Qualidade da Água
11.
Artigo em Inglês | MEDLINE | ID: mdl-23379942

RESUMO

In this article an assessment of the sediment metal pollution (cadmium, copper, chromium, lead, nickel, zinc) in the Veliki Backi canal (Serbia) was carried out using pseudo-total metal content, contamination factor (CF), pollution load index (PLI) and enrichment factor (EF). The study also encompassed pore-water metal concentrations and an assessment of sediment pollution based on the analysis of simultaneously extracted metals (SEM), acid volatile sulphides (AVS) and the sequential extraction procedure. The concentrations of metals are likely to result in harmful effects based on the comparison with sediment quality guidelines (Dutch, Canadian, US EPA - United States Environmental Protection Agency). The ratio of simultaneously extracted metals and volatile acid sulphides was found to be greater than 1 in only one location, which is already recognized as a place of high risk based on the criteria applied. Other samples had Σ[SEM]/[AVS] < 1, despite their high risk classification based on the applied criteria. According to the sequential extraction procedure, zinc and nickel exhibit high risk in most samples, whereas other metals show low and medium risk. The CF values for Cr, Cu and Zn were > 6 in most samples, which denotes very high contamination by these metals. The PLI values indicated moderate and high pollution. The EF values for all metals studied except for Cd in some cases were >1.5, suggesting anthropogenic impact. The obtained results will be invaluable for future activities regarding sediment monitoring and will facilitate the selection of appropriate criteria when evaluating sediment quality.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Poluentes Químicos da Água/análise , Fracionamento Químico , Monitoramento Ambiental/normas , Metais/análise , Metais Pesados/análise , Sérvia
12.
Artigo em Inglês | MEDLINE | ID: mdl-21806450

RESUMO

The objective of this research was to investigate the impact of the hydrocarbon type and concentration, as well as the total effect of the natural weathering process to hydrocarbon biodegradability in sandy soil and the environment. In this experiment, sandy soil was separately contaminated with 0.5%, 1.0%, 2.0% and 3.5% of diesel and crude oils. Oil contaminated soil was taken from the Oil Refinery dumping sites after 9 years of weathering, and its concentration was adjusted to the above-mentioned levels. The biodegradation process was monitored by measuring CO(2), evolution rate, hydrocarbon degradation rate and dehydrogenase activity. The favourable concentration ranges for the soil contaminated with diesel oil were 1.0%, with concentrations at about 2.0% causing slightly adverse effects to CO(2) production which was overcome after 2 weeks, and with 3.5% diesel oil causing significant toxicity. For soil contaminated with crude oil, 2.0% was found to be optimum for effective biodegradation, with 3.5% crude oil also causing adverse effects to CO(2) production, although less so than the same concentration of diesel oil. No adverse effect was obtained for any concentration of the weathered oil, as after the weathering process, the remaining contaminants in the soil were mostly poorly degradable constituents like asphaltenes, resins etc. It has been proposed that such residual material from oil degradation is analogous to, and can even be regarded as, humic material. Due to its inert characteristics, insolubility and similarity to humic materials it is unlikely to be environmentally hazardous.


Assuntos
Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Dióxido de Carbono/metabolismo , Oxirredutases/metabolismo , Petróleo , Solo/química
13.
Recent Pat Nanotechnol ; 15(3): 270-294, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33596815

RESUMO

BACKGROUND: In past years, nanomaterials have been actively studied and developed and successfully used in many fields. Due to water scarcity, the application of nanomaterials in water and wastewater treatment has drawn significant attention. Due to their superior features, they represent functional materials with great potential for pollution removal and environmental applications. OBJECTIVE: This literature review aims to summarize and present the metal nanoparticles used for dye wastewater treatment. The discussion subject is metallic nanoparticles for mentioned use, with a special focus on iron-based, bimetallic, and photocatalytic nanomaterials. METHODS: Reference search of "metal nanoparticles in dye wastewater treatment" was conducted in detail through the Serbian Library Consortium for Coordinated Acquisition (KoBSON). Published papers search was mainly based on Web of Science and ScienceDirect database focusing on the latest research on this topic. The corresponding literature was carefully read, analyzed, and evaluated. RESULTS: Two hundred and twenty-four scientific and review articles, thesis, and book chapters, patents were evaluated in order to summarise current trends in metal nanoparticle use in wastewater treatment. An increasing trend in scientific research regarding metal nanoparticles can be observed for the removal of different inorganic and organic pollutants. Among the most extensively tested are dye molecules, representing challenging species in terms of degradation and consequent removal. Modification, layering, combination, and green synthesis of metal nanoparticles result in materials capable of efficient and environmentally sustainable wastewater treatment. CONCLUSION: In this paper, an extensive review of metal nanoparticles in dye wastewater treatment is presented. With rapid water demand, the development of sustainable materials and technology is necessary. The use of these materials represents eco-friendly, energy-efficient, and sustainable water purification solutions. However, the matter of usage commercialization is still to be addressed.

14.
Chemosphere ; 263: 127816, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32835965

RESUMO

This study investigates the performance of oak (OL) and mulberry (ML) leaves for synthesized of nanoscale zero-valent iron (nZVI), in immobilizing Cu and Ni in contaminated sediment. Characterization of synthesized Fe nanoparticles from oak and mulberry leaf extracts demonstrated that they are nontoxic and stabile nanomaterials for application in the sediment remediation. Effectiveness of stabilization process was performed by microwave-assisted sequential extraction procedure (MWSE) and single-step leaching tests which have been applied to evaluate the metal extraction potential. This research showed that OL-nZVI and ML-nZVI were effective in transforming available Cu and Ni to stable fraction. The maximum residual percentage of Cu increased by 76% and 73%, and for Ni 81% and 80%, respectively, with addition of 5% OL-nZVI and 5% ML-nZVI. Used single-step leaching tests (Toxicity Characteristic Leaching Procedure-TCLP and German standard test- DIN) indicated that all stabilized samples can be considered as non-hazardous waste, as all leached metal concentrations met the appropriate set criteria. Cost analysis showed that the operating cost for contaminated sediment treatment with green synthesized nZVI are 50.37 €/m3/per year. This work provides a new insight into the immobilization mechanism and environmental impact of Cu and Ni in contaminated sediment and potential way of treatment with OL-nZVI and ML-nZVI. Generally, nZVI can be an effective and versatile tool for stabilization of sediment polluted with toxic metals.


Assuntos
Recuperação e Remediação Ambiental , Morus , Poluentes do Solo , Análise Custo-Benefício , Ferro , Extratos Vegetais , Rios
15.
ScientificWorldJournal ; 10: 1-19, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-20062947

RESUMO

The assessment of the quality of sediment from the Great Backi Canal (Serbia), based on the pseudo-total lead (Pb) and cadmium (Cd) content according to the corresponding Dutch standards and Canadian guidelines, showed its severe contamination with these two metals. A microwave-assisted BCR (Community Bureau of Reference of the Commission of the European Union) sequential extraction procedure was employed to assess their potential mobility and risk to the aquatic environment. Comparison of the results of sequential extraction and different criteria for sediment quality assessment has led to somewhat contradictory conclusions. Namely, while the results of sequential extraction showed that Cd comes under the high-risk category, Pb shows low risk to the environment, despite its high pseudo-total content. The contaminated sediment, irrespective of the different speciation of Pb and Cd, was subjected to the same immobilization, stabilization/solidification (S/S) treatments using kaolinite, montmorillonite, kaolinite-quicklime, montmorillonite-quicklime, fly ash, zeolite, or zeolite-fly ash combination. Semi-dynamic leaching tests were conducted for Pb- and Cd-contaminated sediment in order to assess the long-term leaching behavior of these metals. In order to simulate "worst case" leaching conditions, the semi-dynamic leaching test was modified using 0.014 M acetic acid (pH = 3.25) and humic acid solutions (20 mg TOC l-1) as leachants instead of deionized water. The effectiveness of S/S treatment was evaluated by determining diffusion coefficients (De) and leachability indices (LX). The standard toxicity characteristic leaching procedure (TCLP) was applied to evaluate the extraction potential of Pb and Cd. A diffusion-based model was used to elucidate the controlling leaching mechanisms. Generally, the test results indicated that all applied S/S treatments were effective in immobilizing Pb and Cd, and the treated sediments may be considered acceptable for "controlled utilization" based on LX values, irrespective of their different availability in the untreated samples. In the majority of samples, the controlling leaching mechanism appeared to be diffusion, which indicates that a slow leaching of Cd and Pb could be expected when the above S/S agents were applied. The TCLP results showed that all S/S samples were nonhazardous.


Assuntos
Cádmio/análise , Sedimentos Geológicos/análise , Chumbo/análise , Poluentes Químicos da Água/análise , Cádmio/isolamento & purificação , Monitoramento Ambiental/métodos , Monitoramento Ambiental/normas , Sedimentos Geológicos/química , Chumbo/isolamento & purificação , Sérvia , Poluentes Químicos da Água/isolamento & purificação
16.
Water Sci Technol ; 61(12): 3169-77, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20555214

RESUMO

In the central Banat region (Northern Serbia), groundwater is used as a drinking water source. Raw water originates from a 40-80 m and 100-150 m deep layer. It contains a high amount of natural organic matter (DOC = 9.17+/-0.87 mg C/L) with a trihalomethanes formation potential of 448+/-88.2 microg/L and a haloacetic acid formation potential of 174+/-68.9 microg/L. A high amount of arsenic (86.0+/-3.4 microg/L) is also found in this water. This study used a pilot-scale system to investigate the possibilities of combining polyaluminium chloride and ferrous-chloride to remove disinfection by-products precursors and arsenic by coagulation. Two treatment trains with different pre-treatment steps were investigated (ozone vs. H2O2/O3). For the final water polishing, filtration with granulated activated carbon (GAC) was applied. Both investigated treatment lines achieved a satisfactory chemical water quality. Simulation of disinfection conditions was performed and the contents of trihalomethanes and haloacetic acids measured, to investigate whether the chemical quality of the water remained satisfactory over a 48 hour period.


Assuntos
Arsênio/isolamento & purificação , Meios de Transporte/normas , Abastecimento de Água/normas , Cloreto de Alumínio , Compostos de Alumínio , Cloretos , Filtração/métodos , Floculação , Nefelometria e Turbidimetria , Ozônio/análise , Projetos Piloto , Sérvia
17.
Artigo em Inglês | MEDLINE | ID: mdl-20390878

RESUMO

This paper presents a comparison of the efficacy of three different coagulants (polyaluminium chloride (PACl), Aluminium sulphate (Al(2)(SO(4))(3)) and ferrous chloride (FeCl(3))) for natural organic matter and arsenic (As) removal from groundwater. Coagulation efficacy was evaluated for the coagulants alone and for combinations of them (PACl/FeCl(3); Al(2)(SO(4))(3)/FeCl(3)), on the basis of changes in dissolved organic matter (DOC) and arsenic content. For single coagulants, PACl (30 mg Al/L) showed optimal efficacy for DOC removal (57%, relative to raw water). The highest arsenic reduction (< 5 microg As/L in coagulated water) was achieved when a very high 300 mg/L dose of FeCl(3) was used. However, if PACl (30 mg Al/L) and FeCl(3) (10 mg FeCl(3)/L) are combined, the efficacy of DOC removal increases compared to PACl and FeCl(3) alone under similar doses (66% decrease in DOC relative to raw water). The DOC and As contents of the coagulated water after application of these doses were 2.26 mg C/L and 9.7 microg/L, respectively, compared to 6.44 mg C/L and 60.5 microg As/L measured in the raw groundwater. The combination of Al(2)(SO(4))(3) and FeCl(3) did not show any improvement in DOC and As removal efficacy relative to using those coagulants alone.


Assuntos
Compostos de Alúmen/química , Arsênio/química , Compostos Férricos/química , Sais/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Hidróxido de Alumínio/química , Arsênio/isolamento & purificação , Compostos Ferrosos/química , Sérvia
18.
Artigo em Inglês | MEDLINE | ID: mdl-20574868

RESUMO

This paper describes a bench-scale study dealing with the removal of heavy metals by electrokinetic (EK) remediation from sediment of the Great Backa Canal (Vojvodina, Republic of Serbia), with an emphasis on the dependence of removal efficacies on the physicochemical states of the heavy metals and sediment chemistry. Sediment samples were spiked with the following heavy metals (mg kg(-1)): Zn 4400, Ni 900, Cu 1140 and Cd 57. In addition to determining the pseudo-total metal content in the contaminated sediment before and after EK treatment, BCR sequential extraction was also performed to examine the distribution of the contaminants in the sediment. Conventional EK remediation (EXP I) was ineffective in removing the heavy metals investigated, so two enhanced processes were developed. In both these processes, the mass of treated sediment was reduced to avoid the presence of inactive electric field areas in the sediment and increase current density. The first enhanced experiment (EXP II) used acetic acid (HAc) solution (pH 2.9) as an anolyte. Combined with the smaller sediment mass, this resulted in an increase in overall removal efficacies (9% for Zn, 15% for Ni, 10% for Cu and 15% for Cd). The second enhanced experiment (EXP III), as well as using HAc solution as an anolyte, made use of a cation exchange membrane in the cathodic chamber to minimize pH changes in the region adjacent to the cathode, which negatively influenced the removal of some heavy metals. However, no improvement in removal efficacy was achieved in EXP III. Since the redox potential of the sediment drops during the EK process, metals removal is limited by the formation of their sulfides. In conclusion, the removal of heavy metals by EK remediation is governed by a complex interplay of the complexation, precipitation and reduction processes, and the difficulties encountered in their optimization can explain the unsatisfactory effectiveness achieved by the described remediation procedure. Improved understanding of the behavior of metal ions during EK treatment can be useful in predicting and enhancing the efficacy of the process.


Assuntos
Cádmio/química , Cobre/química , Técnicas Eletroquímicas , Recuperação e Remediação Ambiental , Sedimentos Geológicos/química , Níquel/química , Zinco/química , Cádmio/isolamento & purificação , Cobre/isolamento & purificação , Metais Pesados/química , Metais Pesados/isolamento & purificação , Níquel/isolamento & purificação , Sérvia , Zinco/isolamento & purificação
19.
Environ Monit Assess ; 158(1-4): 381-92, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18972215

RESUMO

The relationship between whole effluent toxicity (WET) and chemical-based effluent quality assessment across a range of effluent types was examined for the first time in Serbia. WET was determined by Daphnia magna acute tests, while chemical-based toxicity was taken as theoretical for concentrations of priority chemicals and effluent quality assessment based on the valid Serbian regulations. A poor correlation was found between WET and chemical-based effluent quality assessment: positive toxicity tests were found, in general, in cases where samples satisfied the requirements of mandatory effluent monitoring. Statistically insignificant correlation between the predicted and observed toxicity indicated that the presence of priority substances accounted to the overall toxicity only to a certain degree, most probably due to a rather short list of priority pollutants regularly analysed in effluents. Current monitoring requirements neglect hazards that derive from potentially present toxicants and unpredictable toxicity of complex mixtures, which led to poor correlation between the WET and chemical-based results in this study.


Assuntos
Monitoramento Ambiental , Resíduos Industriais/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Animais , Daphnia/efeitos dos fármacos , Sérvia , Testes de Toxicidade , Iugoslávia
20.
Sci Total Environ ; 684: 186-195, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31153066

RESUMO

After dredging of contaminated sediment, additional remediation technique is required before its final disposal. For this purpose, this research was based on the long-term stabilization/solidification (S/S) process of highly contaminated sediment (dominantly by heavy metals) from a European environmental hot spot, the Great Backa Canal. Due to optimisation of remediation techniques, this sediment is treated with selected immobilization agents: kaolinite, quicklime and Portland cement. The use of pseudo-total metal content (selected priority substances: Cr, Ni, Cu, Cd, Zn, Pb and As) in untreated sediment, determined that sediment urgently requires remediation. Short-term (after 7 and 28 days) and long-term (after 7 years) monitoring were done in order to estimate the concentrations of metals and effect on biota from S/S mixtures during this processes. The environmental risk assessment encompassed the application of several appropriate analytical methods: the pseudo-total metal content, the German standard leaching test - DIN 3841-4 S4 and Toxicity Characteristic Leaching Procedure - TCLP test leaching tests and sequential extraction procedure (BCR) on S/S mixtures, testing the aging process and toxicity effects. After simulating real environmental conditions using all tests in all three mixtures, metals do not exceed the prescribed limit values and as such S/S mixtures are classified as non-hazardous waste. Sequential extraction procedure showed that the highest percentage of metals are in the residual phase, bound to silicates and crystalline structure. After 7 years of S/S mixture aging, kaolinite showed the highest binding capacity that was reflected in the content of metals in the residual phase (34.8% of Ni to 77.6% of Cr). DIN and TCLP leaching tests confirmed that the exchangeable phase has a minor effect on the environment. Accordingly, this remediation technology could be well applied for final disposal of this and similar extremely contaminated sediment dominantly with inorganic pollutants.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa