Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Molecules ; 25(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105614

RESUMO

Little is known about the pharmacological activity of Monarda fistulosa L. essential oils. To address this issue, we isolated essential oils from the flowers and leaves of M. fistulosa and analyzed their chemical composition. We also analyzed the pharmacological effects of M. fistulosa essential oils on transient receptor potential (TRP) channel activity, as these channels are known targets of various essential oil constituents. Flower (MEOFl) and leaf (MEOLv) essential oils were comprised mainly of monoterpenes (43.1% and 21.1%) and oxygenated monoterpenes (54.8% and 77.7%), respectively, with a high abundance of monoterpene hydrocarbons, including p-cymene, γ-terpinene, α-terpinene, and α-thujene. Major oxygenated monoterpenes of MEOFl and MEOLv included carvacrol and thymol. Both MEOFl and MEOLv stimulated a transient increase in intracellular free Ca2+ concentration ([Ca2+]i) in TRPA1 but not in TRPV1 or TRPV4-transfected cells, with MEOLv being much more effective than MEOFl. Furthermore, the pure monoterpenes carvacrol, thymol, and ß-myrcene activated TRPA1 but not the TRPV1 or TRPV4 channels, suggesting that these compounds represented the TRPA1-activating components of M. fistulosa essential oils. The transient increase in [Ca2+]i induced by MEOFl/MEOLv, carvacrol, ß-myrcene, and thymol in TRPA1-transfected cells was blocked by a selective TRPA1 antagonist, HC-030031. Although carvacrol and thymol have been reported previously to activate the TRPA1 channels, this is the first report to show that ß-myrcene is also a TRPA1 channel agonist. Finally, molecular modeling studies showed a substantial similarity between the docking poses of carvacrol, thymol, and ß-myrcene in the binding site of human TRPA1. Thus, our results provide a cellular and molecular basis to explain at least part of the therapeutic properties of these essential oils, laying the foundation for prospective pharmacological studies involving TRP ion channels.


Assuntos
Flores/química , Monarda/química , Monoterpenos/química , Óleos Voláteis/química , Óleos Voláteis/metabolismo , Folhas de Planta/química , Canal de Cátion TRPA1/metabolismo , Cálcio/metabolismo , Monoterpenos Cicloexânicos/química , Cimenos/química , Cromatografia Gasosa-Espectrometria de Massas , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Estruturas Vegetais/química , Timol/química
2.
Proc Natl Acad Sci U S A ; 113(8): 2110-5, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26858457

RESUMO

Lipid oxidation products, including lysophosphatidylcholine (lysoPC), activate canonical transient receptor potential 6 (TRPC6) channels leading to inhibition of endothelial cell (EC) migration in vitro and delayed EC healing of arterial injuries in vivo. The precise mechanism through which lysoPC activates TRPC6 channels is not known, but calmodulin (CaM) contributes to the regulation of TRPC channels. Using site-directed mutagenesis, cDNAs were generated in which Tyr(99) or Tyr(138) of CaM was replaced with Phe, generating mutant CaM, Phe(99)-CaM, or Phe(138)-CaM, respectively. In ECs transiently transfected with pcDNA3.1-myc-His-Phe(99)-CaM, but not in ECs transfected with pcDNA3.1-myc-His-Phe(138)-CaM, the lysoPC-induced TRPC6-CaM dissociation and TRPC6 externalization was disrupted. Also, the lysoPC-induced increase in intracellular calcium concentration was inhibited in ECs transiently transfected with pcDNA3.1-myc-His-Phe(99)-CaM. Blocking phosphorylation of CaM at Tyr(99) also reduced CaM association with the p85 subunit and subsequent activation of phosphatidylinositol 3-kinase (PI3K). This prevented the increase in phosphatidylinositol (3,4,5)-trisphosphate (PIP3) and the translocation of TRPC6 to the cell membrane and reduced the inhibition of EC migration by lysoPC. These findings suggest that lysoPC induces CaM phosphorylation at Tyr(99) by a Src family kinase and that phosphorylated CaM activates PI3K to produce PIP3, which promotes TRPC6 translocation to the cell membrane.


Assuntos
Sinalização do Cálcio/fisiologia , Calmodulina/metabolismo , Membrana Celular/metabolismo , Movimento Celular/fisiologia , Células Endoteliais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Cálcio/metabolismo , Calmodulina/genética , Bovinos , Membrana Celular/genética , Células Endoteliais/citologia , Ativação Enzimática/fisiologia , Humanos , Lisofosfatidilcolinas/genética , Lisofosfatidilcolinas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Transporte Proteico/fisiologia , Canais de Cátion TRPC/genética , Canal de Cátion TRPC6
3.
Basic Res Cardiol ; 111(2): 21, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26907473

RESUMO

We demonstrated previously that TRPV1-dependent coupling of coronary blood flow (CBF) to metabolism is disrupted in diabetes. A critical amount of H2O2 contributes to CBF regulation; however, excessive H2O2 impairs responses. We sought to determine the extent to which differential regulation of TRPV1 by H2O2 modulates CBF and vascular reactivity in diabetes. We used contrast echocardiography to study TRPV1 knockout (V1KO), db/db diabetic, and wild type C57BKS/J (WT) mice. H2O2 dose-dependently increased CBF in WT mice, a response blocked by the TRPV1 antagonist SB366791. H2O2-induced vasodilation was significantly inhibited in db/db and V1KO mice. H2O2 caused robust SB366791-sensitive dilation in WT coronary microvessels; however, this response was attenuated in vessels from db/db and V1KO mice, suggesting H2O2-induced vasodilation occurs, in part, via TRPV1. Acute H2O2 exposure potentiated capsaicin-induced CBF responses and capsaicin-mediated vasodilation in WT mice, whereas prolonged luminal H2O2 exposure blunted capsaicin-induced vasodilation. Electrophysiology studies re-confirms acute H2O2 exposure activated TRPV1 in HEK293A and bovine aortic endothelial cells while establishing that H2O2 potentiate capsaicin-activated TRPV1 currents, whereas prolonged H2O2 exposure attenuated TRPV1 currents. Verification of H2O2-mediated activation of intrinsic TRPV1 specific currents were found in isolated mouse coronary endothelial cells from WT mice and decreased in endothelial cells from V1KO mice. These data suggest prolonged H2O2 exposure impairs TRPV1-dependent coronary vascular signaling. This may contribute to microvascular dysfunction and tissue perfusion deficits characteristic of diabetes.


Assuntos
Circulação Coronária , Angiopatias Diabéticas/metabolismo , Peróxido de Hidrogênio/metabolismo , Microcirculação , Canais de Cátion TRPV/metabolismo , Animais , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
Front Pharmacol ; 14: 1241578, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795030

RESUMO

Introduction: Despite their inclination to induce tolerance, addictive states, and respiratory depression, synthetic opioids are among the most effective clinically administered drugs to treat severe acute/chronic pain and induce surgical anesthesia. Current medical interventions for opioid-induced respiratory depression (OIRD), wooden chest syndrome, and opioid use disorder (OUD) show limited efficacy and are marked by low success in the face of highly potent synthetic opioids such as fentanyl. D-Cysteine ethylester (D-CYSee) prevents OIRD and post-treatment withdrawal in male/female rats and mice with minimal effect on analgesic status. However, the potential aversive or rewarding effects of D-CYSee have yet to be fully characterized and its efficacy could be compromised by interactions with opioid-reward pathology. Methods: Using a model of fentanyl-induced conditioned place preference (CPP), this study evaluated 1) the dose and sex dependent effects of fentanyl to induce rewarding states, and 2) the extent to which D-CYSee alters affective state and the acquisition of fentanyl-induced seeking behaviors. Results: Fentanyl reward-related effects were found to be dose and sex dependent. Male rats exhibited a range-bound dose response centered at 5 µg/kg. Female rats exhibited a CPP only at 50 µg/kg. This dose was effective in 25% of females with the remaining 75% showing no significant CPP at any dose. Pretreatment with 100 mg/kg, but not 10 mg/kg, D-CYSee prevented acquisition of fentanyl seeking in males while both doses were effective at preventing acquisition in females. Discussion: These findings suggest that D-CYSee is an effective co-treatment with prescribed opioids to reduce the development of OUD.

5.
Am J Physiol Heart Circ Physiol ; 303(2): H216-23, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22610171

RESUMO

We have previously shown transient receptor potential vanilloid subtype 1 (TRPV1) channel-dependent coronary function is compromised in pigs with metabolic syndrome (MetS). However, the mechanisms through which TRPV1 channels couple coronary blood flow to metabolism are not fully understood. We employed mice lacking TRPV1 [TRPV1((-/-))], db/db diabetic, and control C57BKS/J mice to determine the extent to which TRPV1 channels modulate coronary function and contribute to vascular dysfunction in diabetic cardiomyopathy. Animals were subjected to in vivo infusion of the TRPV1 agonist capsaicin to examine the hemodynamic actions of TRPV1 activation. Capsaicin (1-100 µg·kg(-1)·min(-1)) dose dependently increased coronary blood flow in control mice, which was inhibited by the TRPV1 antagonist capsazepine or the nitric oxide synthase (NOS) inhibitor N-nitro-l-arginine methyl ester (L-NAME). In addition, the capsaicin-mediated increase in blood flow was attenuated in db/db mice. TRPV1((-/-)) mice exhibited no changes in coronary blood flow in response to capsaicin. Vasoreactivity studies in isolated pressurized mouse coronary microvessels revealed a capsaicin-dependent relaxation that was inhibited by the TRPV1 inhibitor SB366791 l-NAME and to the large conductance calcium-sensitive potassium channel (BK) inhibitors iberiotoxin and Penetrim A. Similar to in vivo responses, capsaicin-mediated relaxation was impaired in db/db mice compared with controls. Changes in pH (pH 7.4-6.0) relaxed coronary vessels contracted to the thromboxane mimetic U46619 in all three groups of mice; however, pH-mediated relaxation was blunted in vessels obtained from TRPV1((-/-)) and db/db mice compared with controls. Western blot analysis revealed decreased myocardial TRPV1 protein expression in db/db mice compared with controls. Our data reveal TRPV1 channels mediate coupling of myocardial blood flow to cardiac metabolism via a nitric oxide-dependent, BK channel-dependent pathway that is corrupted in diabetes.


Assuntos
Vasos Coronários/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Óxido Nítrico/metabolismo , Canais de Cátion TRPV/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Anilidas/farmacologia , Animais , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Cinamatos/farmacologia , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/fisiopatologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Cardiomiopatias Diabéticas/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microvasos/efeitos dos fármacos , Microvasos/fisiopatologia , NG-Nitroarginina Metil Éster/farmacologia , Peptídeos/farmacologia , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/biossíntese , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos
6.
Physiol Rep ; 10(7): e15212, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35403369

RESUMO

Type 2 diabetes (T2D) affects >30 million Americans and nearly 70% of individuals with T2D will die from cardiovascular disease (CVD). Circulating levels of the inflammatory signaling lipid, prostaglandin E2 (PGE2 ), are elevated in the setting of obesity and T2D and are associated with decreased cardiac function. The EP3 and EP4 PGE2 receptors have opposing actions in several tissues, including the heart: overexpression of EP3 in cardiomyocytes impairs function, while EP4 overexpression improves function. Here we performed complementary studies in vitro with isolated cardiomyocytes and in vivo using db/db mice, a model of T2D, to analyze the effects of EP3 inhibition or EP4 activation on cardiac function. Using echocardiography, we found that 2 weeks of systemic treatment of db/db mice with 20 mg/kg of EP3 antagonist, beginning at 6 weeks of age, improves ejection fraction and fractional shortening (with no effect on heart rate). We further show that either EP3 blockade or EP4 activation enhances contractility and calcium cycling in isolated mouse cardiomyocytes cultured in both normal and high glucose. Thus, peak [Ca2+ ]I transient amplitude was increased, while time to peak [Ca2+ ]I and [Ca2+ ]I decay were decreased. These data suggest that modulation of EP3 and EP4 activity has beneficial effects on cardiomyocyte contractility and overall heart function.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Dinoprostona/farmacologia , Humanos , Camundongos , Miócitos Cardíacos , Receptores de Prostaglandina E Subtipo EP3 , Receptores de Prostaglandina E Subtipo EP4
7.
Am J Physiol Heart Circ Physiol ; 301(3): H1135-42, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21705674

RESUMO

Transient receptor potential vanilliod 1 (TRPV1) channels have recently been postulated to play a role in the vascular complications/consequences associated with diabetes despite the fact that the mechanisms through which TRPV1 regulates vascular function are not fully known. Accordingly, our goal was to define the mechanisms by which TRPV1 channels modulate vascular function and contribute to vascular dysfunction in diabetes. We subjected mice lacking TRPV1 [TRPV1((-/-))], db/db, and control C57BLKS/J mice to in vivo infusion of the TRPV1 agonist capsaicin or the α-adrenergic agonist phenylephrine (PE) to examine the integrated circulatory actions of TRPV1. Capsaicin (1, 10, 20, and 100 µg/kg) dose dependently increased MAP in control mice (5.7 ± 1.6, 11.7 ± 2.1, 25.4 ± 3.4, and 51.6 ± 3.9%), which was attenuated in db/db mice (3.4 ± 2.1, 3.9 ± 2.1, 7.0 ± 3.3, and 17.9 ± 6.2%). TRPV1((-/-)) mice exhibited no changes in MAP in response to capsaicin, suggesting the actions of this agonist are specific to TRPV1 activation. Immunoblot analysis revealed decreased aortic TRPV1 protein expression in db/db compared with control mice. Capsaicin-induced responses were recorded following inhibition of endothelin A and B receptors (ET(A) /ET(B)). Inhibition of ET(A) receptors abolished the capsaicin-mediated increases in MAP. Combined antagonism of ET(A) and ET(B) receptors did not further inhibit the capsaicin response. Cultured endothelial cell exposure to capsaicin increased endothelin production as shown by an endothelin ELISA assay, which was attenuated by inhibition of TRPV1 or endothelin-converting enzyme. TRPV1 channels contribute to the regulation of vascular reactivity and MAP via production of endothelin and subsequent activation of vascular ET(A) receptors. Impairment of TRPV1 channel function may contribute to vascular dysfunction in diabetes.


Assuntos
Pressão Sanguínea , Diabetes Mellitus Tipo 2/metabolismo , Angiopatias Diabéticas/metabolismo , Endotelina-1/metabolismo , Artéria Femoral/metabolismo , Canais de Cátion TRPV/metabolismo , Vasoconstrição , Agonistas alfa-Adrenérgicos/administração & dosagem , Análise de Variância , Animais , Azepinas/administração & dosagem , Compostos de Bifenilo/administração & dosagem , Pressão Sanguínea/efeitos dos fármacos , Capsaicina/administração & dosagem , Células Cultivadas , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatologia , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/fisiopatologia , Dipeptídeos/administração & dosagem , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Células Endoteliais/metabolismo , Antagonistas do Receptor de Endotelina A , Antagonistas do Receptor de Endotelina B , Ensaio de Imunoadsorção Enzimática , Artéria Femoral/efeitos dos fármacos , Artéria Femoral/fisiopatologia , Indóis/administração & dosagem , Infusões Intravenosas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenilefrina/administração & dosagem , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/genética , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/administração & dosagem
8.
Anesthesiology ; 114(5): 1169-79, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21364461

RESUMO

BACKGROUND: Cross talk between peripheral nociceptors belonging to the transient receptor potential vanilloid receptor subtype-1 (TRPV1) and ankyrin subtype-1 (TRPA1) family has been demonstrated recently. Moreover, the intravenous anesthetic propofol has directly activates TRPA1 receptors and indirectly restores sensitivity of TRPV1 receptors in dorsal root ganglion (DRG) sensory neurons. Our objective was to determine the extent to which TRPA1 activation is involved in mediating the propofol-induced restoration of TRPV1 sensitivity. METHODS: Mouse DRG neurons were isolated by enzymatic dissociation and grown for 24 h. F-11 cells were transfected with complementary DNA for both TRPV1 and TRPA1 or TRPV1 only. The intracellular Ca concentration was measured in individual cells via fluorescence microscopy. After TRPV1 desensitization with capsaicin (100 nM), cells were treated with propofol (1, 5, and 10 µM) alone or with propofol in the presence of the TRPA1 antagonist, HC-030031 (0.5 µM), or the TRPA1 agonist, allyl isothiocyanate (AITC; 100 µM); capsaicin was then reapplied. RESULTS: In DRG neurons that contain both TRPV1 and TRPA1, propofol and AITC restored TRPV1 sensitivity. However, in DRG neurons containing only TRPV1 receptors, exposure to propofol or AITC after desensitization did not restore capsaicin-induced TRPV1 sensitivity. Similarly, in F-11 cells transfected with both TRPV1 and TRPA1, propofol and AITC restored TRPV1 sensitivity. However, in F-11 cells transfected with TRPV1 only, neither propofol nor AITC was capable of restoring TRPV1 sensitivity. CONCLUSIONS: These data demonstrate that propofol restores TRPV1 sensitivity in primary DRG neurons and in cultured F-11 cells transfected with both the TRPV1 and TRPA1 receptors via a TRPA1-dependent process. Propofol's effects on sensory neurons may be clinically important and may contribute to peripheral sensitization to nociceptive stimuli in traumatized tissue.


Assuntos
Anestésicos Intravenosos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Propofol/farmacologia , Células Receptoras Sensoriais/efeitos dos fármacos , Canais de Cátion TRPV/efeitos dos fármacos , Canais de Potencial de Receptor Transitório/efeitos dos fármacos , Animais , Capsaicina , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Canal de Cátion TRPA1 , Canais de Cátion TRPV/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo
9.
Front Pharmacol ; 12: 749084, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630119

RESUMO

We have reported that pretreatment with the clinically approved superoxide dismutase mimetic, Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl), blunts the cardiorespiratory depressant responses elicited by a subsequent injection of fentanyl, in halothane-anesthetized rats. The objective of the present study was to determine whether Tempol is able to reverse the effects of morphine on arterial blood-gas (ABG) chemistry in freely-moving Sprague Dawley rats. The intravenous injection of morphine (10 mg/kg) elicited substantial decreases in pH, pO2 and sO2 that were accompanied by substantial increases in pCO2 and Alveolar-arterial gradient, which results in diminished gas-exchange within the lungs. Intravenous injection of a 60 mg/kg dose of Tempol 15 min after the injection of morphine caused minor improvements in pO2 and pCO2 but not in other ABG parameters. In contrast, the 100 mg/kg dose of Tempol caused an immediate and sustained reversal of the negative effects of morphine on arterial blood pH, pCO2, pO2, sO2 and Alveolar-arterial gradient. In other rats, we used pulse oximetry to determine that the 100 mg/kg dose of Tempol, but not the 60 mg/kg dose elicited a rapid and sustained reversal of the negative effects of morphine (10 mg/kg, IV) on tissue O2 saturation (SpO2). The injection of morphine caused a relatively minor fall in mean arterial blood pressure that was somewhat exacerbated by Tempol. These findings demonstrate that Tempol can reverse the negative effects of morphine on ABG chemistry in freely-moving rats paving the way of structure-activity and mechanisms of action studies with the host of Tempol analogues that are commercially available.

10.
Anesthesiology ; 113(4): 833-44, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20808213

RESUMO

BACKGROUND: The activity of transient receptor potential vanilloid subtype-1 (TRPV1) receptors, key nociceptive transducers in dorsal root ganglion sensory neurons, is enhanced by protein kinase C epsilon (PKCepsilon) activation. The intravenous anesthetic propofol has been shown to activate PKCepsilon. Our objectives were to examine whether propofol modulates TRPV1 function in dorsal root ganglion neurons via activation of PKCepsilon. METHODS: Lumbar dorsal root ganglion neurons from wild-type and PKC& epsilon;-null mice were isolated and cultured for 24 h. Intracellular free Ca concentration was measured in neurons by using fura-2 acetoxymethyl ester. The duration of pain-associated behaviors was also assessed. Phosphorylation of PKCepsilon and TRPV1 and the cellular translocation of PKCepsilon from cytosol to membrane compartments were assessed by immunoblot analysis. RESULTS: In wild-type neurons, repeated stimulation with capsaicin (100 nm) progressively decreased the transient rise in intracellular free Ca concentration. After desensitization, exposure to propofol rescued the Ca response. The resensitizing effect of propofol was absent in neurons obtained from PKCepsilon-null mice. Moreover, the capsaicin-induced desensitization of TRPV1 was markedly attenuated in the presence of propofol in neurons from wild-type mice but not in neurons from PKCepsilon-null mice. Propofol also prolonged the duration of agonist-induced pain associated behaviors in wild-type mice. In addition, propofol increased phosphorylation of PKCepsilon as well as TRPV1 and stimulated translocation of PKCepsilon from cytosolic to membrane fraction. DISCUSSION: Our results indicate that propofol modulates TRPV1 sensitivity to capsaicin and that this most likely occurs through a PKCepsilon-mediated phosphorylation of TRPV1.


Assuntos
Anestésicos Intravenosos , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Propofol , Proteína Quinase C-épsilon/fisiologia , Células Receptoras Sensoriais/efeitos dos fármacos , Canais de Cátion TRPV/agonistas , Animais , Western Blotting , Cálcio/metabolismo , Separação Celular , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dor/psicologia , Medição da Dor/efeitos dos fármacos , Fosforilação , Proteína Quinase C-épsilon/genética , Transporte Proteico , Transdução de Sinais/efeitos dos fármacos , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo
11.
Anesthesiology ; 111(1): 36-43, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19512879

RESUMO

BACKGROUND: Myocardial protection by anesthetics is known to involve activation of protein kinase C epsilon (PKC epsilon). A key step in the activation process is autophosphorylation of the enzyme at serine 729. This study's objectives were to identify the extent to which propofol interacts with PKC epsilon and to identify the molecular mechanism(s) of interaction. METHODS: Immunoblot analysis of recombinant PKC epsilon was used to assess autophosphorylation of PKC epsilon at serine 729 before and after exposure to propofol. An enzyme-linked immunosorbant assay kit was used for measuring PKC epsilon activity. Spectral shifts in fluorescence emission maxima of the C1B subdomain of PKC epsilon in combination with the fluorescent phorbol ester, sapintoxin D, was used to identify molecular interactions between propofol and the phorbol ester/diacylglycerol binding site on the enzyme. RESULTS: Propofol (1 microM) caused a sixfold increase in immunodetectable serine 729 phosphorylated PKC epsilon and increased catalytic activity of the enzyme in a dose-dependent manner. Dioctanoylglycerol-induced or phorbol myristic acetate-induced activation of recombinant PKC epsilon activity was enhanced by preincubation with propofol. Both propofol and phorbol myristic acetate quenched the intrinsic fluorescence spectra of the PKC epsilon C1B subdomain in a dose-dependent manner, and propofol caused a further leftward-shift in the fluorescence emission maxima of sapintoxin D after addition of the C1B subdomain. CONCLUSIONS: These results demonstrate that propofol interacts with recombinant PKC epsilon causing autophosphorylation and activation of the enzyme. Moreover, propofol enhances phorbol ester-induced catalytic activity, suggesting that propofol binds to a region near the phorbol ester binding site allowing for allosteric modulation of PKC epsilon catalytic activity.


Assuntos
Propofol/farmacologia , Proteína Quinase C-épsilon/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Sequência de Aminoácidos , Animais , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Insetos , Dados de Sequência Molecular , Proteína Quinase C-épsilon/química , Proteínas Recombinantes/metabolismo
12.
Channels (Austin) ; 13(1): 192-206, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31161862

RESUMO

The functional expression of transient receptor potential cation channel of the ankyrin-1 subtype (TRPA1) has recently been identified in adult mouse cardiac tissue where stimulation of this ion channel leads to increases in adult mouse ventricular cardiomyocyte (CM) contractile function via a Ca2+-Calmodulin-dependent kinase (CaMKII) pathway. However, the extent to which TRPA1 induces nitric oxide (NO) production in CMs, and whether this signaling cascade mediates physiological or pathophysiological events in cardiac tissue remains elusive. Freshly isolated CMs from wild-type (WT) or TRPA1 knockout (TRPA1-/-) mouse hearts were treated with AITC (100 µM) and prepared for immunoblot, NO detection or ischemia protocols. Our findings demonstrate that TRPA1 stimulation with AITC results in phosphorylation of protein kinase B (Akt) and endothelial NOS (eNOS) concomitantly with NO production in a concentration- and time-dependent manner. Additionally, we found that TRPA1 induced increases in CM [Ca2+]i and contractility occur independently of Akt and eNOS activation mechanisms. Further analysis revealed that the presence and activation of TRPA1 promotes CM survival and viability following ischemic insult via a mechanism partially dependent upon eNOS. Therefore, activation of the TRPA1/Akt/eNOS pathway attenuates ischemia-induced CM cell death.


Assuntos
Isquemia/metabolismo , Miócitos Cardíacos/citologia , Óxido Nítrico Sintase Tipo III/metabolismo , Canal de Cátion TRPA1/metabolismo , Animais , Cálcio/metabolismo , Morte Celular , Células Cultivadas , Humanos , Isquemia/enzimologia , Isquemia/genética , Isquemia/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Canal de Cátion TRPA1/genética
13.
Circulation ; 116(4): 399-410, 2007 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-17620508

RESUMO

BACKGROUND: Antibodies to the beta1-adrenergic receptor (beta1AR) are detected in a substantial number of patients with idiopathic dilated cardiomyopathy (DCM). The mechanism whereby these autoantibodies exert their pathogenic effect is unknown. Here, we define a causal mechanism whereby beta1AR-specific autoantibodies mediate noninflammatory cardiomyocyte cell death during murine DCM. METHODS AND RESULTS: We used the beta1AR protein as an immunogen in SWXJ mice and generated a polyclonal battery of autoantibodies that showed selective binding to the beta1AR. After transfer into naive male hosts, beta1AR antibodies elicited fulminant DCM at high frequency. DCM was attenuated after immunoadsorption of beta1AR IgG before transfer and by selective pharmacological antagonism of host beta1AR but not beta2AR. We found that beta1AR autoantibodies shifted the beta1AR into the agonist-coupled high-affinity state and activated the canonical cAMP-dependent protein kinase A signaling pathway in cardiomyocytes. These events led to functional alterations in intracellular calcium handling and contractile function. Sustained agonism by beta1AR autoantibodies elicited caspase-3 activation, cardiomyocyte apoptosis, and DCM in vivo, and these processes were prevented by in vivo treatment with the pan-caspase inhibitor Z-VAD-FMK. CONCLUSIONS: Our data show how beta1AR-specific autoantibodies elicit DCM by agonistically inducing cardiomyocyte apoptosis.


Assuntos
Apoptose/fisiologia , Autoanticorpos/fisiologia , Cardiomiopatia Dilatada/imunologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta 1/imunologia , Agonistas Adrenérgicos beta/sangue , Animais , Autoanticorpos/sangue , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Células Cultivadas , Humanos , Masculino , Camundongos , Miócitos Cardíacos/patologia
15.
Channels (Austin) ; 12(1): 65-75, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29308980

RESUMO

Transient receptor potential cation channel, subfamily A, member 1 (TRPA1), is activated by a broad range of noxious stimuli. Cdk5, a member of the Cdk family, has recently been identified as a modulator of pain signaling pathways. In the current study, we investigated the extent to which Cdk5 modulates TRPA1 activity. Cdk5 inhibition was found to attenuate TRPA1 response to agonist in mouse DRG sensory neurons. Additionally, the presence of active Cdk5 was associated with increased TRPA1 phosphorylation in transfected HEK293 cells that was roscovitine-sensitive and absent in the mouse mutant S449A full-length channel. Immunopurified Cdk5 was observed to phosphorylate human TRPA1 peptide substrate at S448A in vitro. Our results point to a role for Cdk5 in modulating TRPA1 activity.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Células Receptoras Sensoriais/metabolismo , Canal de Cátion TRPA1/metabolismo , Animais , Células Cultivadas , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Quinase 5 Dependente de Ciclina/deficiência , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Células Receptoras Sensoriais/efeitos dos fármacos , Canal de Cátion TRPA1/antagonistas & inibidores
16.
Channels (Austin) ; 11(6): 587-603, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28792844

RESUMO

RATIONALE: Transient receptor potential channels of the ankyrin subtype-1 (TRPA1) are non-selective cation channels that show high permeability to calcium. Previous studies from our laboratory have demonstrated that TRPA1 ion channels are expressed in adult mouse ventricular cardiomyocytes (CMs) and are localized at the z-disk, costamere and intercalated disk. The functional significance of TRPA1 ion channels in the modulation of CM contractile function have not been explored. OBJECTIVE: To identify the extent to which TRPA1 ion channels are involved in modulating CM contractile function and elucidate the cellular mechanism of action. METHODS AND RESULTS: Freshly isolated CMs were obtained from murine heart and loaded with Fura-2 AM. Simultaneous measurement of intracellular free Ca2+ concentration ([Ca2+]i) and contractility was performed in individual CMs paced at 0.3 Hz. Our findings demonstrate that TRPA1 stimulation with AITC results in a dose-dependent increase in peak [Ca2+]i and a concomitant increase in CM fractional shortening. Further analysis revealed a dose-dependent acceleration in time to peak [Ca2+]i and velocity of shortening as well as an acceleration in [Ca2+]i decay and velocity of relengthening. These effects of TRPA1 stimulation were not observed in CMs pre-treated with the TRPA1 antagonist, HC-030031 (10 µmol/L) nor in CMs obtained from TRPA1-/- mice. Moreover, we observed no significant increase in cAMP levels or PKA activity in response to TRPA1 stimulation and the PKA inhibitor peptide (PKI 14-22; 100 nmol/L) failed to have any effect on the TRPA1-mediated increase in CM contractile function. However, TRPA1 stimulation resulted in a rapid phosphorylation of Ca2+/calmodulin-dependent kinase II (CaMKII) (1-5 min) that correlated with increases in CM [Ca2+]i and contractile function. Finally, all aspects of TRPA1-dependent increases in CM [Ca2+]i, contractile function and CaMKII phosphorylation were virtually abolished by the CaMKII inhibitors, KN-93 (10 µmol/L) and autocamtide-2-related peptide (AIP; 20 µmol/L). CONCLUSIONS: These novel findings demonstrate that stimulation of TRPA1 ion channels in CMs results in activation of a CaMKII-dependent signaling pathway resulting in modulation of intracellular Ca2+ availability and handling leading to increases in CM contractile function. Cardiac TRPA1 ion channels may represent a novel therapeutic target for increasing the inotropic and lusitropic state of the heart.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Canal de Cátion TRPA1/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Canal de Cátion TRPA1/deficiência
17.
PLoS One ; 12(6): e0180106, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28644897

RESUMO

BACKGROUND: Transient receptor potential (TRP) ion channels have emerged as key components contributing to vasoreactivity. Propofol, an anesthetic is associated with adverse side effects including hypotension and acute pain upon infusion. Our objective was to determine the extent to which TRPA1 and/or TRPV1 ion channels are involved in mediating propofol-induced vasorelaxation of mouse coronary arterioles in vitro and elucidate the potential cellular signal transduction pathway by which this occurs. METHODS: Hearts were excised from anesthetized mice and coronary arterioles were dissected from control C57Bl/6J, TRPA1-/-, TRPV1-/- and double-knockout mice (TRPAV-/-). Isolated microvessels were cannulated and secured in a temperature-controlled chamber and allowed to equilibrate for 1 hr. Vasoreactivity studies were performed in microvessels pre-constricted with U46619 to assess the dose-dependent relaxation effects of propofol on coronary microvascular tone. RESULTS: Propofol-induced relaxation was unaffected in vessels obtained from TRPV1-/- mice, markedly attenuated in pre-constricted vessels obtained from TRPA1-/- mice and abolished in vessels obtained from TRPAV-/- mice. Furthermore, NOS inhibition with L-NAME or endothelium denuding abolished the proporfol-induced depressor response in pre-constricted vessels obtained from all mice. In the absence of L-NAME, BKCa inhibition with penitrem A markedly attenuated propofol-mediated relaxation in vessels obtained from wild-type mice and to a lesser extent in vessels obtained from TRPV1-/-, mice with no effect in vessels obtained from TRPA1-/- or TRPAV-/- mice. CONCLUSIONS: TRPA1 and TRPV1 appear to contribute to the propofol-mediated antagonism of U46619-induced constriction in murine coronary microvessels that involves activation of NOS and BKCa.


Assuntos
Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/antagonistas & inibidores , Vasos Coronários/efeitos dos fármacos , Propofol/farmacologia , Canais de Cátion TRPV/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Vasodilatadores/farmacologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Animais , Células Cultivadas , Vasos Coronários/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvasos/efeitos dos fármacos , Microvasos/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Canal de Cátion TRPA1 , Canais de Cátion TRPV/genética , Canais de Potencial de Receptor Transitório/genética , Vasoconstritores/antagonistas & inibidores , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
18.
J Leukoc Biol ; 101(6): 1361-1371, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28258152

RESUMO

Essential oil extracts from Ferula iliensis have been used traditionally in Kazakhstan for treatment of inflammation and other illnesses. Because little is known about the biologic activity of these essential oils that contributes to their therapeutic properties, we analyzed their chemical composition and evaluated their phagocyte immunomodulatory activity. The main components of the extracted essential oils were (E)-propenyl sec-butyl disulfide (15.7-39.4%) and (Z)-propenyl sec-butyl disulfide (23.4-45.0%). Ferula essential oils stimulated [Ca2+]i mobilization in human neutrophils and activated ROS production in human neutrophils and murine bone marrow phagocytes. Activation of human neutrophil [Ca2+]i flux by Ferula essential oils was dose-dependently inhibited by capsazepine, a TRPV1 channel antagonist, indicating that TRPV1 channels mediate this response. Furthermore, Ferula essential oils stimulated Ca2+ influx in TRPV1 channel-transfected HEK293 cells and desensitized the capsaicin-induced response in these cells. Additional molecular modeling with known TRPV1 channel agonists suggested that the active component is likely to be (Z)-propenyl sec-butyl disulfide. Our results provide a cellular and molecular basis to explain at least part of the beneficial therapeutic properties of FEOs.


Assuntos
Ferula/química , Neutrófilos/imunologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Fagócitos/imunologia , Animais , Cálcio/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Camundongos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Fagócitos/efeitos dos fármacos , Fagócitos/metabolismo , Canais de Cátion TRPV/metabolismo
19.
Channels (Austin) ; 10(5): 395-409, 2016 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27144598

RESUMO

Transient receptor potential channels of the ankyrin subtype-1 (TRPA1) and vanilloid subtype-1 (TRPV1) are structurally related, non-selective cation channels that show a high permeability to calcium. Previous studies indicate that TRP channels play a prominent role in the regulation of cardiovascular dynamics and homeostasis, but also contribute to the pathophysiology of many diseases and disorders within the cardiovascular system. However, no studies to date have identified the functional expression and/or intracellular localization of TRPA1 in primary adult mouse ventricular cardiomyocytes (CMs). Although TRPV1 has been implicated in the regulation of cardiac function, there is a paucity of information regarding functional expression and localization of TRPV1 in adult CMs. Our current studies demonstrate that TRPA1 and TRPV1 ion channels are co-expressed at the protein level in CMs and both channels are expressed throughout the endocardium, myocardium and epicardium. Moreover, immunocytochemical localization demonstrates that both channels predominantly colocalize at the Z-discs, costameres and intercalated discs. Furthermore, specific TRPA1 and TRPV1 agonists elicit dose-dependent, transient rises in intracellular free calcium concentration ([Ca2+]i) that are abolished in CMs obtained from TRPA1-/- and TRPV1-/- mice. Similarly, we observed a dose-dependent attenuation of the TRPA1 and TRPV1 agonist-induced increase in [Ca2+]i when WT CMs were pretreated with increasing concentrations of selective TRPA1 or TRPV1 channel antagonists. In summary, these findings demonstrate functional expression and the precise ultrastructural localization of TRPA1 and TRPV1 ion channels in freshly isolated mouse CMs. Crosstalk between TRPA1 and TRPV1 may be important in mediating cellular signaling events in cardiac muscle.


Assuntos
Miócitos Cardíacos/fisiologia , Canais de Cátion TRPV/fisiologia , Canais de Potencial de Receptor Transitório/fisiologia , Animais , Cálcio/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Canal de Cátion TRPA1 , Canais de Cátion TRPV/genética , Canais de Potencial de Receptor Transitório/genética
20.
Free Radic Biol Med ; 101: 10-19, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27682362

RESUMO

We demonstrated previously that TRPV1-dependent regulation of coronary blood flow (CBF) is disrupted in diabetes. Further, we have shown that endothelial TRPV1 is differentially regulated, ultimately leading to the inactivation of TRPV1, when exposed to a prolonged pathophysiological oxidative environment. This environment has been shown to increase lipid peroxidation byproducts including 4-Hydroxynonenal (4-HNE). 4-HNE is notorious for producing protein post-translation modification (PTM) via reactions with the amino acids: cysteine, histidine and lysine. Thus, we sought to determine if 4-HNE mediated post-translational modification of TRPV1 could account for dysfunctional TRPV1-mediated signaling observed in diabetes. Our initial studies demonstrate 4-HNE infusion decreases TRPV1-dependent coronary blood flow in C57BKS/J (WT) mice. Further, we found that TRPV1-dependent vasorelaxation was suppressed after 4-HNE treatment in isolated mouse coronary arterioles. Moreover, we demonstrate 4-HNE significantly inhibited TRPV1 currents and Ca2+ entry utilizing patch-clamp electrophysiology and calcium imaging respectively. Using molecular modeling, we identified potential pore cysteines residues that, when mutated, could restore TRPV1 function in the presence of 4-HNE. Specifically, complete rescue of capsaicin-mediated activation of TRPV1 was obtained following mutation of pore Cysteine 621. Finally, His tag pull-down of TRPV1 in HEK cells treated with 4-HNE demonstrated a significant increase in 4-HNE binding to TRPV1, which was reduced in the TRPV1 C621G mutant. Taken together these data suggest that 4-HNE decreases TRPV1-mediated responses, at both the in vivo and in vitro levels and this dysfunction can be rescued via mutation of the pore Cysteine 621. Our results show the first evidence of an amino acid specific modification of TRPV1 by 4-HNE suggesting this 4-HNE-dependent modification of TRPV1 may contribute to microvascular dysfunction and tissue perfusion deficits characteristic of diabetes.


Assuntos
Aldeídos/farmacologia , Capsaicina/farmacologia , Fármacos Cardiovasculares/farmacologia , Diabetes Mellitus/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Canais de Cátion TRPV/metabolismo , Potenciais de Ação/efeitos dos fármacos , Aldeídos/antagonistas & inibidores , Aldeídos/metabolismo , Animais , Velocidade do Fluxo Sanguíneo , Sinalização do Cálcio/efeitos dos fármacos , Circulação Coronária/efeitos dos fármacos , Vasos Coronários/metabolismo , Vasos Coronários/fisiopatologia , Cisteína/genética , Cisteína/metabolismo , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/fisiopatologia , Modelos Animais de Doenças , Artéria Femoral/metabolismo , Artéria Femoral/fisiopatologia , Células HEK293 , Humanos , Peroxidação de Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Canais de Cátion TRPV/genética , Vasodilatação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa