Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Monit Assess ; 191(Suppl 3): 807, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31989339

RESUMO

North Indian Ocean witnesses varied dynamical response due to independent climate modes such as Indian Ocean Dipole (IOD)/El Niño Southern Oscillations (ENSO) and their co-occurrences. These modes have a significant impact on ocean productivity, which in turn shows feedback for the strengthening of these patterns. Keeping this in view, the present work attempts to analyze the biological activity during the combined influence of positive IOD with El Niño during 2006-2007 event. To divulge the biological variability along with the dynamical response, the study includes intra-annual variability surface chlorophyll anomaly with D20 anomaly using satellite observations. Here, the individual role of IOD and ENSO on both surface chlorophyll and D20 is segregated through partial regression analysis for a period of 25 years (1993-2017). By the regression method, it can be seen varied chlorophyll response for the 2006-2007 event with the IOD forcing leads to the major spatial and temporal variability with positive anomalies in Eastern Equatorial Indian Ocean (EEIO) (generally oligotrophic), Northwestern Bay of Bengal (NWBoB), and Northwestern Arabian Sea (NAS2) where production begins in fall intermonsoon and peaks up during November. On the other hand, negative anomalies are observed around the southern tip of India (SBoB) and the Northern Arabian Sea (NAS1). While ENSO depicts the high surface chlorophyll variability in the Western Indian Ocean (WIO1, WIO2) with negative anomalies of surface chlorophyll. This study observed an asymmetric response of chlorophyll variability over the North Indian Ocean during the 1997-1998 and 2006-2007 events with a major influence of IOD mode compared with the El Niño. Therefore, understanding the chlorophyll anomalies during different climate modes will help us to better understand the interannual variability and improve the predictability of chlorophyll productivity regions.


Assuntos
Clorofila , El Niño Oscilação Sul , Clorofila/análise , Monitoramento Ambiental , Índia , Oceano Índico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa