Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 140(46): 15675-15683, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30371066

RESUMO

Fabrication of heterostructures using two-dimensional (2D) materials with different bandgaps creates opportunities for exploring new properties and device applications. Ruddlesden-Popper (RP) layered halide perovskites have recently emerged as a new class of solution-processable 2D materials that demonstrate exotic optoelectronic properties. However, heterostructures using 2D halide perovskites have not been achieved. Here, we report a simple solution growth method for making vertically stacked double heterostructures and complex multilayer heterostructures of 2D lead iodide perovskites [(PEA)2(MA) n-1Pb nI3 n+1, PEA = C6H5(CH2)2NH3+, MA = CH3NH3+] via van der Waals epitaxy. These heterostructures present atomically sharp interfaces and display distinct photoluminescence that allow fingerprinting the RP phases. Time-resolved photoluminescence measurements reveal internal energy transfer from higher energy bandgap (lower n value) perovskite layers to lower energy bandgap (higher n value) perovskite layers on the time scale of hundreds of picoseconds due to natural type I band alignments. These results offer new strategies to fabricate perovskite-perovskite heterojunctions by taking advantage of surface-bound ligands as spatial barriers to prevent ion migration across the junctions. These heterostructures capable of multicolor emission with high spectral purity are promising for light-emitting applications.

2.
Nano Lett ; 17(1): 460-466, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28002671

RESUMO

With the intense interest in inorganic cesium lead halide perovskites and their nanostructures for optoelectronic applications, high-quality crystalline nanomaterials with controllable morphologies and growth directions are desirable. Here, we report a vapor-phase epitaxial growth of horizontal single-crystal CsPbX3 (X = Cl, Br, I) nanowires (NWs) and microwires (MWs) with controlled crystallographic orientations on the (001) plane of phlogopite and muscovite mica. Moreover, single NWs, Y-shaped branches, interconnected NW or MW networks with 6-fold symmetry, and, eventually, highly dense epitaxial network of CsPbBr3 with nearly continuous coverage were controllably obtained by varying the growth time. Detailed structural study revealed that the CsPbBr3 wires grow along the [001] directions and have the (100) facets exposed. The incommensurate heteroepitaxial lattice match between the CsPbBr3 and mica crystal structures and the growth mechanism of these horizontal wires due to asymmetric lattice mismatch were proposed. Furthermore, the photoluminescence waveguiding and good performance from the photodetector device fabricated with these CsPbBr3 networks demonstrated that these well-connected CsPbBr3 NWs could serve as straightforward platforms for fundamental studies and optoelectronic applications.

3.
J Am Chem Soc ; 139(38): 13525-13532, 2017 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-28872870

RESUMO

High-quality metal halide perovskite single crystals have low defect densities and excellent photophysical properties, yet thin films are the most sought after material geometry for optoelectronic devices. Perovskite single-crystal thin films (SCTFs) would be highly desirable for high-performance devices, but their growth remains challenging, particularly for inorganic metal halide perovskites. Herein, we report the facile vapor-phase epitaxial growth of cesium lead bromide perovskite (CsPbBr3) continuous SCTFs with controllable micrometer thickness, as well as nanoplate arrays, on traditional oxide perovskite SrTiO3(100) substrates. Heteroepitaxial single-crystal growth is enabled by the serendipitous incommensurate lattice match between these two perovskites, and overcoming the limitation of island-forming Volmer-Weber crystal growth is critical for growing large-area continuous thin films. Time-resolved photoluminescence, transient reflection spectroscopy, and electrical transport measurements show that the CsPbBr3 epitaxial thin film has a slow charge carrier recombination rate, low surface recombination velocity (104 cm s-1), and low defect density of 1012 cm-3, which are comparable to those of CsPbBr3 single crystals. This work suggests a general approach using oxide perovskites as substrates for heteroepitaxial growth of halide perovskites. The high-quality halide perovskite SCTFs epitaxially integrated with multifunctional oxide perovskites could open up opportunities for a variety of high-performance optoelectronics devices.

4.
Nano Lett ; 15(5): 3403-9, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25870920

RESUMO

Layered double hydroxides (LDHs) are a family of two-dimensional (2D) materials with layered crystal structures that have found many applications. Common strategies to synthesize LDHs lead to a wide variety of morphologies, from discrete 2D nanosheets to nanoflowers. Here, we report a study of carefully controlled LDH nanoplate syntheses using zinc aluminum (ZnAl) and cobalt aluminum (CoAl) LDHs as examples and reveal their crystal growth to be driven by screw dislocations. By controlling and maintaining a low precursor supersaturation using a continuous flow reactor, individual LDH nanoplates with well-defined morphologies were synthesized on alumina-coated substrates, instead of the nanoflowers that result from uncontrolled overgrowth. The dislocation-driven growth was further established for LDH nanoplates directly synthesized using the respective metal salt precursors. Atomic force microscopy revealed screw dislocation growth spirals, and under transmission electron microscopy, thin CoAl LDH nanoplates displayed complex contrast contours indicative of strong lattice strain caused by dislocations. These results suggest the dislocation-driven mechanism is generally responsible for the growth of 2D LDH nanostructures, and likely other materials with layered crystal structures, which could help the rational synthesis of well-defined 2D nanomaterials with improved properties.

5.
J Am Chem Soc ; 137(48): 15090-3, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26601790

RESUMO

Nickel-iron oxides/hydroxides are among the most active electrocatalysts for the oxygen evolution reaction. In an effort to gain insight into the role of Fe in these catalysts, we have performed operando Mössbauer spectroscopic studies of a 3:1 Ni:Fe layered hydroxide and a hydrous Fe oxide electrocatalyst. The catalysts were prepared by a hydrothermal precipitation method that enabled catalyst growth directly on carbon paper electrodes. Fe(4+) species were detected in the NiFe hydroxide catalyst during steady-state water oxidation, accounting for up to 21% of the total Fe. In contrast, no Fe(4+) was detected in the Fe oxide catalyst. The observed Fe(4+) species are not kinetically competent to serve as the active site in water oxidation; however, their presence has important implications for the role of Fe in NiFe oxide electrocatalysts.

6.
Adv Sci (Weinh) ; 11(3): e2303228, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37997193

RESUMO

Animal-sourced hydrogels, such as collagen, are widely used as extracellular-matrix (ECM) mimics in tissue engineering but are plagued with problems of reproducibility, immunogenicity, and contamination. Synthetic, chemically defined hydrogels can avoid such issues. Despite the abundance of collagen in the ECM, synthetic collagen hydrogels are extremely rare due to design challenges brought on by the triple-helical structure of collagen. Sticky-ended symmetric self-assembly (SESSA) overcomes these challenges by maximizing interactions between the strands of the triple helix, allowing the assembly of collagen-mimetic peptides (CMPs) into robust synthetic collagen nanofibers. This optimization, however, also minimizes interfiber contacts. In this work, symmetric association states for the SESSA of short CMPs to probe their increased propensity for interfiber association are modelled. It is found that 33-residue CMPs not only self-assemble through sticky ends, but also form hydrogels. These self-assemblies behave with remarkable consistency across multiple scales and present a clear link between their triple-helical architecture and the properties of their hydrogels. The results show that SESSA is an effective and robust design methodology that enables the rational design of synthetic collagen hydrogels.


Assuntos
Colágeno , Hidrogéis , Animais , Hidrogéis/química , Reprodutibilidade dos Testes , Colágeno/química , Peptídeos/química , Matriz Extracelular
7.
J Phys Chem Lett ; 11(16): 6551-6559, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32700916

RESUMO

Layered two-dimensional Ruddlesden-Popper (RP) halide perovskites are an intriguing class of semiconductors being explored for their linear and nonlinear optical and ferroelectric properties. Second harmonic generation (SHG) is commonly used to screen for noncentrosymmetric and ferroelectric materials. However, SHG measurements of perovskites can be obscured by their intense multiphoton photoluminescence (mPL). Here, we apply multidimensional harmonic generation as a method to eliminate the complications from mPL. By scanning and correlating both excitation and emission frequencies, we unambiguously assess whether a material supports SHG by examining if an emission feature scales as twice the excitation frequency. Measurements of a series of n = 2, 3 RP perovskites reveal that, contrary to previous belief, n-butylammonium (BA) RP perovskites are not SHG-active and thus centrosymmetric, but RP perovskites with phenylethylammonium (PEA) and 2-thiophenemethylammonium (TPMA) spacer cations display SHG. This work establishes multidimensional harmonic generation as a definitive method to measure SHG in halide perovskites.

8.
Adv Mater ; 29(21)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28370535

RESUMO

Semiconducting photocatalytic solar-hydrogen conversion (SHC) from water is a great challenge for renewable fuel production. Organic semiconductors hold great promise for SHC in an economical and environmentally benign manner. However, organic semiconductors available for SHC are scarce and less efficient than most inorganic ones, largely due to their intrinsic Frenkel excitons with high binding energy. In this study the authors report polymer heterojunction (PHJ) photocatalysts consisting of polyfluorene family polymers and graphitic carbon nitride (g-C3 N4 ) for efficient SHC. A molecular design strategy is executed to further promote the exciton dissociation or light harvesting ability of these PHJs via alternative approaches. It is revealed that copolymerizing electron-donating carbazole unit into the poly(9,9-dioctylfluorene) backbone promotes exciton dissociation within the poly(N-decanyl-2,7-carbazole-alt-9,9-dioctylfluorene) (PCzF)/g-C3 N4 PHJ, achieving an enhanced apparent quantum yield (AQY) of 27% at 440 nm over PCzF/g-C3 N4 . Alternatively, copolymerizing electron-accepting benzothiadiazole unit extended the visible light response of the obtained poly(9,9-dioctylfluorene-alt-benzothiadiazole)/g-C3 N4 PHJ, leading to an AQY of 13% at 500 nm. The present study highlights that constructing PHJs and adapting a rational molecular design of PHJs are effective strategies to exploit more of the potential of organic semiconductors for efficient solar energy conversion.

9.
ACS Nano ; 7(2): 1309-16, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23297693

RESUMO

A bimetallic nanocatalyst with unique surface configuration displays extraordinary performance for converting biomass-derived polyols to chemicals, with potentially much broader applications in the design of novel catalysts for several reactions of industrial relevance. The synthesis of nanostructured metal catalysts containing a large population of active surface facets is critical to achieve high activity and selectivity in catalytic reactions. Here, we describe a new strategy for synthesizing copper-based nanocatalysts on reduced graphene oxide support in which the catalytically active {111} facet is achieved as the dominant surface by lattice-match engineering. This method yields highly active Cu-graphene catalysts (turnover frequency = 33-114 mol/g atom Cu/h) for converting biopolyols (glycerol, xylitol, and sorbitol) to value-added chemicals, such as lactic acid and other useful co-products consisting of diols and linear alcohols. Palladium incorporation in the Cu-graphene system in trace amounts results in a tandem synergistic system in which the hydrogen generated in situ from polyols is used for sequential hydrogenolysis of the feedstock itself. Furthermore, the Pd addition remarkably enhances the overall stability of the nanocatalysts. The insights gained from this synthetic methodology open new vistas for exploiting graphene-based supports to develop novel and improved metal-based catalysts for a variety of heterogeneous catalytic reactions.


Assuntos
Biomassa , Cobre/química , Grafite/química , Nanoestruturas/química , Paládio/química , Polímeros/química , Catálise , Modelos Moleculares , Conformação Molecular , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa