RESUMO
In hypoxic and pseudohypoxic rodent models of pulmonary hypertension (PH), hypoxia-inducible factor (HIF) inhibition attenuates disease initiation. However, HIF activation alone, due to genetic alterations or use of inhibitors of prolyl hydroxylase domain (PHD) enzymes, has not been definitively shown to cause PH in humans, indicating the involvement of other mechanisms. Given the association between endothelial cell dysfunction and PH, the effects of pseudohypoxia and its underlying pathways were investigated in primary human lung endothelial cells. PHD2 silencing or inhibition, while activating HIF2α, induced apoptosis-resistance and IFN/STAT activation in endothelial cells, independent of HIF signaling. Mechanistically, PHD2 deficiency activated AKT and ERK, inhibited JNK, and reduced AIP1 (ASK1-interacting protein 1), all independent of HIF2α. Like PHD2, AIP1 silencing affected these same kinase pathways and produced a similar dysfunctional endothelial cell phenotype, which was partially reversed by AKT inhibition. Consistent with these in vitro findings, AIP1 protein levels in lung endothelial cells were decreased in Tie2-Cre/Phd2 knockout mice compared with wild-type controls. Lung vascular endothelial cells from patients with pulmonary arterial hypertension (PAH) showed IFN/STAT activation. Lung tissue from both SU5416/hypoxia PAH rats and patients with PAH all showed AKT activation and dysregulated AIP1 expression. In conclusion, PHD2 deficiency in lung vascular endothelial cells drives an apoptosis-resistant and inflammatory phenotype, mediated by AKT activation and AIP1 loss independent of HIF signaling. Targeting these pathways, including PHD2, AKT, and AIP1, holds the potential for developing new treatments for endothelial dysfunction in PH.NEW & NOTEWORTHY HIF activation alone does not conclusively lead to human PH, suggesting that HIF-independent signaling may also contribute to hypoxia-induced PH. This study demonstrated that PHD2 silencing-induced pseudohypoxia in human lung endothelial cells suppresses apoptosis and activates STAT, effects that persist despite HIF2α inhibition or knockdown and are attributed to AKT and ERK activation, JNK inhibition, and AIP1 loss. These findings align with observations in lung endothelial cells and tissues from PAH rodent models and patients.
Assuntos
Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Células Endoteliais , Hipertensão Pulmonar , Prolina Dioxigenases do Fator Induzível por Hipóxia , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Animais , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Transdução de Sinais , Pulmão/metabolismo , Pulmão/patologia , Camundongos Knockout , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genéticaRESUMO
BACKGROUND: Comparative effectiveness research is meant to determine which commonly employed medical interventions are most beneficial, least harmful, and/or most costly in a real-world setting. While the objectives for comparative effectiveness research are clear, the field has failed to develop either a uniform definition of comparative effectiveness research or an appropriate set of recommendations to provide standards for the design of critical care comparative effectiveness research trials, spurring controversy in recent years. The insertion of non-representative control and/or comparator arm subjects into critical care comparative effectiveness research trials can threaten trial subjects' safety. Nonetheless, the broader scientific community does not always appreciate the importance of defining and maintaining critical care practices during a trial, especially when vulnerable, critically ill populations are studied. Consequently, critical care comparative effectiveness research trials sometimes lack properly constructed control or active comparator arms altogether and/or suffer from the inclusion of "unusual critical care" that may adversely affect groups enrolled in one or more arms. This oversight has led to critical care comparative effectiveness research trial designs that impair informed consent, confound interpretation of trial results, and increase the risk of harm for trial participants. METHODS/EXAMPLES: We propose a novel approach to performing critical care comparative effectiveness research trials that mandates the documentation of critical care practices prior to trial initiation. We also classify the most common types of critical care comparative effectiveness research trials, as well as the most frequent errors in trial design. We present examples of these design flaws drawn from past and recently published trials as well as examples of trials that avoided those errors. Finally, we summarize strategies employed successfully in well-designed trials, in hopes of suggesting a comprehensive standard for the field. CONCLUSION: Flawed critical care comparative effectiveness research trial designs can lead to unsound trial conclusions, compromise informed consent, and increase risks to research subjects, undermining the major goal of comparative effectiveness research: to inform current practice. Well-constructed control and comparator arms comprise indispensable elements of critical care comparative effectiveness research trials, key to improving the trials' safety and to generating trial results likely to improve patient outcomes in clinical practice.
Assuntos
Braço , Pesquisa Comparativa da Efetividade , Humanos , Consentimento Livre e Esclarecido , Sujeitos da Pesquisa , Cuidados CríticosRESUMO
Interferonopathies, interferon (IFN)-α/ß therapy, and caveolin-1 (CAV1) loss-of-function have all been associated with pulmonary arterial hypertension (PAH). Here, CAV1-silenced primary human pulmonary artery endothelial cells (PAECs) were proliferative and hypermigratory, with reduced cytoskeletal stress fibers. Signal transducers and activators of transcription (STAT) and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) were both constitutively activated in these cells, resulting in a type I IFN-biased inflammatory signature. Cav1-/- mice that spontaneously develop pulmonary hypertension were found to have STAT1 and AKT activation in lung homogenates and increased circulating levels of CXCL10, a hallmark of IFN-mediated inflammation. PAH patients with CAV1 mutations also had elevated serum CXCL10 levels and their fibroblasts mirrored phenotypic and molecular features of CAV1-deficient PAECs. Moreover, immunofluorescence staining revealed endothelial CAV1 loss and STAT1 activation in the pulmonary arterioles of patients with idiopathic PAH, suggesting that this paradigm might not be limited to rare CAV1 frameshift mutations. While blocking JAK/STAT or AKT rescued aspects of CAV1 loss, only AKT inhibitors suppressed activation of both signaling pathways simultaneously. Silencing endothelial nitric oxide synthase (NOS3) prevented STAT1 and AKT activation induced by CAV1 loss, implicating CAV1/NOS3 uncoupling and NOS3 dysregulation in the inflammatory phenotype. Exogenous IFN reduced CAV1 expression, activated STAT1 and AKT, and altered the cytoskeleton of PAECs, implicating these mechanisms in PAH associated with autoimmune and autoinflammatory diseases, as well as IFN therapy. CAV1 insufficiency elicits an IFN inflammatory response that results in a dysfunctional endothelial cell phenotype and targeting this pathway may reduce pathologic vascular remodeling in PAH.
Assuntos
Caveolina 1/genética , Endotélio Vascular/metabolismo , Hipertensão Pulmonar/metabolismo , Interferon Tipo I/metabolismo , Animais , Células Cultivadas , Endotélio Vascular/enzimologia , Endotélio Vascular/fisiopatologia , Inativação Gênica , Humanos , Hipertensão Pulmonar/fisiopatologia , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , Fator de Transcrição STAT1/metabolismo , Transdução de SinaisRESUMO
Pulmonary arterial hypertension (PAH) is a progressive cardiopulmonary disease characterized by pathologic vascular remodeling of small pulmonary arteries. Endothelial dysfunction in advanced PAH is associated with proliferation, apoptosis resistance, and endothelial to mesenchymal transition (EndoMT) due to aberrant signaling. DLL4, a cell membrane associated NOTCH ligand, plays a pivotal role maintaining vascular integrity. Inhibition of DLL4 has been associated with the development of pulmonary hypertension, but the mechanism is incompletely understood. Here we report that BMPR2 silencing in pulmonary artery endothelial cells (PAECs) activated AKT and suppressed the expression of DLL4. Consistent with these in vitro findings, increased AKT activation and reduced DLL4 expression was found in the small pulmonary arteries of patients with PAH. Increased NOTCH1 activation through exogenous DLL4 blocked AKT activation, decreased proliferation and reversed EndoMT. Exogenous and overexpression of DLL4 induced BMPR2 and PPRE promoter activity, and BMPR2 and PPARG mRNA in idiopathic PAH (IPAH) ECs. PPARγ, a nuclear receptor associated with EC homeostasis, suppressed by BMPR2 loss was induced and activated by DLL4/NOTCH1 signaling in both BMPR2-silenced and IPAH ECs, reversing aberrant phenotypic changes, in part through AKT inhibition. Directly blocking AKT or restoring DLL4/NOTCH1/PPARγ signaling may be beneficial in preventing or reversing the pathologic vascular remodeling of PAH.
Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II , Células Endoteliais , PPAR gama , Proteínas Proto-Oncogênicas c-akt , Artéria Pulmonar , Receptor Notch1 , Transdução de Sinais , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , PPAR gama/metabolismo , PPAR gama/genética , Receptor Notch1/metabolismo , Receptor Notch1/genética , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Células Endoteliais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/patologia , Masculino , Proliferação de Células , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Feminino , Células CultivadasRESUMO
NR2F2 is expressed in endothelial cells (ECs) and Nr2f2 knockout produces lethal cardiovascular defects. In humans, reduced NR2F2 expression is associated with cardiovascular diseases including congenital heart disease and atherosclerosis. Here, NR2F2 silencing in human primary ECs led to inflammation, endothelial-to-mesenchymal transition (EndMT), proliferation, hypermigration, apoptosis-resistance, and increased production of reactive oxygen species. These changes were associated with STAT and AKT activation along with increased production of DKK1. Co-silencing DKK1 and NR2F2 prevented NR2F2-loss-induced STAT and AKT activation and reversed EndMT. Serum DKK1 concentrations were elevated in patients with pulmonary arterial hypertension (PAH) and DKK1 was secreted by ECs in response to in vitro loss of either BMPR2 or CAV1, which are genetic defects associated with the development of PAH. In human primary ECs, NR2F2 suppressed DKK1, whereas its loss conversely induced DKK1 and disrupted endothelial homeostasis, promoting phenotypic abnormalities associated with pathologic vascular remodeling. Activating NR2F2 or blocking DKK1 may be useful therapeutic targets for treating chronic vascular diseases associated with EC dysfunction.NEW & NOTEWORTHY NR2F2 loss in the endothelial lining of blood vessels is associated with cardiovascular disease. Here, NR2F2-silenced human endothelial cells were inflammatory, proliferative, hypermigratory, and apoptosis-resistant with increased oxidant stress and endothelial-to-mesenchymal transition. DKK1 was induced in NR2F2-silenced endothelial cells, while co-silencing NR2F2 and DKK1 prevented NR2F2-loss-associated abnormalities in endothelial signaling and phenotype. Activating NR2F2 or blocking DKK1 may be useful therapeutic targets for treating vascular diseases associated with endothelial dysfunction.
Assuntos
Hipertensão Arterial Pulmonar , Doenças Vasculares , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Endoteliais/metabolismo , Doenças Vasculares/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Inflamação/patologia , Fator II de Transcrição COUP/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismoRESUMO
OBJECTIVES: Serum procalcitonin is often ordered at admission for patients with suspected sepsis and bloodstream infections (BSIs), although its performance characteristics in this setting remain contested. This study aimed to evaluate use patterns and performance characteristics of procalcitonin-on-admission in patients with suspected BSI, with or without sepsis. DESIGN: Retrospective cohort study. SETTING: Cerner HealthFacts Database (2008-2017). PATIENTS: Adult inpatients (≥ 18 yr) who had blood cultures and procalcitonin drawn within 24 hours of admission. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Testing frequency of procalcitonin was determined. Sensitivity of procalcitonin-on-admission for detecting BSI due to different pathogens was calculated. Area under the receiver operating characteristic curve (AUC) was calculated to assess discrimination by procalcitonin-on-admission for BSI in patients with and without fever/hypothermia, ICU admission and sepsis defined by Centers for Disease Control and Prevention Adult Sepsis Event criteria. AUCs were compared using Wald test and p values were adjusted for multiple comparisons. At 65 procalcitonin-reporting hospitals, 74,958 of 739,130 patients (10.1%) who had admission blood cultures also had admission procalcitonin testing. Most patients (83%) who had admission day procalcitonin testing did not have a repeat procalcitonin test. Median procalcitonin varied considerably by pathogen, BSI source, and acute illness severity. At a greater than or equal to 0.5 ng/mL cutoff, sensitivity for BSI detection was 68.2% overall, ranging between 58.0% for enterococcal BSI without sepsis and 96.4% for pneumococcal sepsis. Procalcitonin-on-admission displayed moderate discrimination at best for overall BSI (AUC, 0.73; 95% CI, 0.72-0.73) and showed no additional utility in key subgroups. Empiric antibiotic use proportions were not different between blood culture sampled patients with a positive procalcitonin (39.7%) and negative procalcitonin (38.4%) at admission. CONCLUSIONS: At 65 study hospitals, procalcitonin-on-admission demonstrated poor sensitivity in ruling out BSI, moderate-to-poor discrimination for both bacteremic sepsis and occult BSI and did not appear to meaningfully alter empiric antibiotic usage. Diagnostic stewardship of procalcitonin-on-admission and risk assessment of admission procalcitonin-guided clinical decisions is warranted.
Assuntos
Bacteriemia , Sepse , Adulto , Humanos , Pró-Calcitonina , Estudos Retrospectivos , Reprodutibilidade dos Testes , Biomarcadores , Sepse/diagnóstico , Bacteriemia/diagnóstico , Hospitais , AntibacterianosRESUMO
SOURCE CITATION: REMAP-CAP Writing Committee for the REMAP-CAP Investigators. Effect of antiplatelet therapy on survival and organ support-free days in critically ill patients with COVID-19: a randomized clinical trial. JAMA. 2022;327:1247-59. 35315874.
Assuntos
COVID-19 , Estado Terminal/terapia , Humanos , Inibidores da Agregação Plaquetária/uso terapêutico , Respiração Artificial , SARS-CoV-2RESUMO
In a retrospective cohort study, among 131 773 patients with previous coronavirus disease 2019 (COVID-19), reinfection with severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) was suspected in 253 patients (0.2%) at 238 US healthcare facilities between 1 June 2020 and 28 February 2021. Women displayed a higher cumulative reinfection risk. Healthcare burden and illness severity were similar between index and reinfection encounters.
Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Atenção à Saúde , Feminino , Humanos , Incidência , Reinfecção , Estudos RetrospectivosRESUMO
Treatment with mineralocorticoid receptor (MR) antagonists beginning at the outset of disease, or early thereafter, prevents pulmonary vascular remodeling in preclinical models of pulmonary arterial hypertension (PAH). However, the efficacy of MR blockade in established disease, a more clinically relevant condition, remains unknown. Therefore, we investigated the effectiveness of two MR antagonists, eplerenone (EPL) and spironolactone (SPL), after the development of severe right ventricular (RV) dysfunction in the rat SU5416-hypoxia (SuHx) PAH model. Cardiac magnetic resonance imaging (MRI) in SuHx rats at the end of week 5, before study treatment, confirmed features of established disease including reduced RV ejection fraction and RV hypertrophy, pronounced septal flattening with impaired left ventricular filling and reduced cardiac index. Five weeks of treatment with either EPL or SPL improved left ventricular filling and prevented the further decline in cardiac index compared with placebo. Interventricular septal displacement was reduced by EPL whereas SPL effects were similar, but not significant. Although MR antagonists did not significantly reduce pulmonary artery pressure or vessel remodeling in SuHx rats with established disease, animals with higher drug levels had lower pulmonary pressures. Consistent with effects on cardiac function, EPL treatment tended to suppress MR and proinflammatory gene induction in the RV. In conclusion, MR antagonist treatment led to modest, but consistent beneficial effects on interventricular dependence after the onset of significant RV dysfunction in the SuHx PAH model. These results suggest that measures of RV structure and/or function may be useful endpoints in clinical trials of MR antagonists in patients with PAH.
Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Disfunção Ventricular Direita , Animais , Modelos Animais de Doenças , Hipertensão Pulmonar Primária Familiar , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipóxia/tratamento farmacológico , Indóis , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Pirróis , Ratos , Disfunção Ventricular Direita/tratamento farmacológicoRESUMO
BACKGROUND: Several U.S. hospitals had surges in COVID-19 caseload, but their effect on COVID-19 survival rates remains unclear, especially independent of temporal changes in survival. OBJECTIVE: To determine the association between hospitals' severity-weighted COVID-19 caseload and COVID-19 mortality risk and identify effect modifiers of this relationship. DESIGN: Retrospective cohort study. (ClinicalTrials.gov: NCT04688372). SETTING: 558 U.S. hospitals in the Premier Healthcare Database. PARTICIPANTS: Adult COVID-19-coded inpatients admitted from March to August 2020 with discharge dispositions by October 2020. MEASUREMENTS: Each hospital-month was stratified by percentile rank on a surge index (a severity-weighted measure of COVID-19 caseload relative to pre-COVID-19 bed capacity). The effect of surge index on risk-adjusted odds ratio (aOR) of in-hospital mortality or discharge to hospice was calculated using hierarchical modeling; interaction by surge attributes was assessed. RESULTS: Of 144 116 inpatients with COVID-19 at 558 U.S. hospitals, 78 144 (54.2%) were admitted to hospitals in the top surge index decile. Overall, 25 344 (17.6%) died; crude COVID-19 mortality decreased over time across all surge index strata. However, compared with nonsurging (<50th surge index percentile) hospital-months, aORs in the 50th to 75th, 75th to 90th, 90th to 95th, 95th to 99th, and greater than 99th percentiles were 1.11 (95% CI, 1.01 to 1.23), 1.24 (CI, 1.12 to 1.38), 1.42 (CI, 1.27 to 1.60), 1.59 (CI, 1.41 to 1.80), and 2.00 (CI, 1.69 to 2.38), respectively. The surge index was associated with mortality across ward, intensive care unit, and intubated patients. The surge-mortality relationship was stronger in June to August than in March to May (slope difference, 0.10 [CI, 0.033 to 0.16]) despite greater corticosteroid use and more judicious intubation during later and higher-surging months. Nearly 1 in 4 COVID-19 deaths (5868 [CI, 3584 to 8171]; 23.2%) was potentially attributable to hospitals strained by surging caseload. LIMITATION: Residual confounding. CONCLUSION: Despite improvements in COVID-19 survival between March and August 2020, surges in hospital COVID-19 caseload remained detrimental to survival and potentially eroded benefits gained from emerging treatments. Bolstering preventive measures and supporting surging hospitals will save many lives. PRIMARY FUNDING SOURCE: Intramural Research Program of the National Institutes of Health Clinical Center, the National Institute of Allergy and Infectious Diseases, and the National Cancer Institute.
Assuntos
COVID-19/mortalidade , Hospitalização/estatística & dados numéricos , Corticosteroides/uso terapêutico , Adulto , COVID-19/terapia , Cuidados Críticos/estatística & dados numéricos , Feminino , Número de Leitos em Hospital/estatística & dados numéricos , Mortalidade Hospitalar , Humanos , Masculino , Razão de Chances , Respiração Artificial , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , SARS-CoV-2 , Taxa de Sobrevida , Estados Unidos/epidemiologiaRESUMO
BACKGROUND: Ceftazidime-avibactam has in vitro activity against some carbapenem-resistant gram-negative infections (GNIs), and therefore may be a useful alternative to more toxic antibiotics such as colistin. Understanding ceftazidime-avibactam uptake and usage patterns would inform hospital formularies, stewardship, and antibiotic development. METHODS: A retrospective cohort study assessed inpatient encounters in the Vizient database. Ceftazidime-avibactam and colistin administrations were categorized into presumed empiric (3 consecutive days of therapy or less with qualifying exclusions) versus targeted therapy (≥4 consecutive days of therapy) for presumed carbapenem-resistant GNIs. Quarterly percentage change (QPC) using modified Poisson regression and relative change in frequency of targeted ceftazidime-avibactam to colistin encounters was calculated. Factors associated with preferentially receiving targeted ceftazidime-avibactam versus colistin were identified using generalized estimating equations. RESULTS: Between 2015 quarter (q) 1 and 2017q4, ceftazidime-avibactam was administered 21 215 times across 1901 encounters. Inpatient prescriptions for ceftazidime-avibactam increased from 0.44/10 000 hospitalizations in 2015q1 to 7.7/10 000 in 2017q4 (QPC, +11%; 95% CI, 10-13%; P < .01), while conversely colistin prescriptions decreased quarterly by 5% (95% CI, 4-6%; P < .01). Ceftazidime-avibactam therapy was categorized as empiric 25% of the time, targeted 65% of the time, and indeterminate 10% of the time. Patients with chronic kidney disease were twice as likely to receive targeted ceftazidime-avibactam versus colistin (RR, 2.02; 95% CI, 1.82-2.25), whereas those on dialysis were less likely to receive ceftazidime-avibactam than colistin (RR, 0.71; 95% CI, .61-.83). CONCLUSIONS: Since approval in 2015, ceftazidime-avibactam use has grown for presumed carbapenem-resistant GNIs, while colistin has correspondingly declined. Renal function drove the choice between ceftazidime-avibactam and colistin as targeted therapy.
Assuntos
Farmacorresistência Bacteriana Múltipla , Farmacoepidemiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/uso terapêutico , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Combinação de Medicamentos , Hospitais , Humanos , Testes de Sensibilidade Microbiana , Estudos Retrospectivos , beta-LactamasesRESUMO
Cell-free hemoglobin (CFH) levels are elevated in septic shock and are higher in nonsurvivors. Whether CFH is only a marker of sepsis severity or is involved in pathogenesis is unknown. This study aimed to investigate whether CFH worsens sepsis-associated injuries and to determine potential mechanisms of harm. Fifty-one, 10-12 kg purpose-bred beagles were randomized to receive Staphylococcus aureus intrapulmonary challenges or saline followed by CFH infusions (oxyhemoglobin >80%) or placebo. Animals received antibiotics and intensive care support for 96 h. CFH significantly increased mean pulmonary arterial pressures and right ventricular afterload in both septic and nonseptic animals, effects that were significantly greater in nonsurvivors. These findings are consistent with CFH-associated nitric oxide (NO) scavenging and were associated with significantly depressed cardiac function, and worsened shock, lactate levels, metabolic acidosis, and multiorgan failure. In septic animals only, CFH administration significantly increased mean alveolar-arterial oxygenation gradients, also to a significantly greater degree in nonsurvivors. CFH-associated iron levels were significantly suppressed in infected animals, suggesting that bacterial iron uptake worsened pneumonia. Notably, cytokine levels were similar in survivors and nonsurvivors and were not predictive of outcome. In the absence and presence of infection, CFH infusions resulted in pulmonary hypertension, cardiogenic shock, and multiorgan failure, likely through NO scavenging. In the presence of infection alone, CFH infusions worsened oxygen exchange and lung injury, presumably by supplying iron that promoted bacterial growth. CFH elevation, a known consequence of clinical septic shock, adversely impacts sepsis outcomes through more than one mechanism, and is a biologically plausible, nonantibiotic, noncytokine target for therapeutic intervention.NEW & NOTEWORTHY Cell-free hemoglobin (CFH) elevations are a known consequence of clinical sepsis. Using a two-by-two factorial design and extensive physiological and biochemical evidence, we found a direct mechanism of injury related to nitric oxide scavenging leading to pulmonary hypertension increasing right heart afterload, depressed cardiac function, worsening circulatory failure, and death, as well as an indirect mechanism related to iron toxicity. These discoveries alter conventional thinking about septic shock pathogenesis and provide novel therapeutic approaches.
Assuntos
Hemoglobinas/metabolismo , Pneumonia/metabolismo , Artéria Pulmonar/fisiopatologia , Choque Séptico/metabolismo , Infecções Estafilocócicas/metabolismo , Acidose/metabolismo , Acidose/fisiopatologia , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/fisiopatologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Cães , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Hemoglobinas/farmacologia , Ferro/metabolismo , Ácido Láctico/metabolismo , Insuficiência de Múltiplos Órgãos/metabolismo , Insuficiência de Múltiplos Órgãos/fisiopatologia , Óxido Nítrico/metabolismo , Pneumonia/fisiopatologia , Troca Gasosa Pulmonar , Distribuição Aleatória , Choque Séptico/fisiopatologia , Staphylococcus aureus/crescimento & desenvolvimentoRESUMO
SOURCE CITATION: Deeks JJ, Dinnes J, Takwoingi Y, et al. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database Syst Rev. 2020;6:CD013652. 32584464.
Assuntos
Infecções por Coronavirus , Pandemias , Pneumonia Viral , Anticorpos Antivirais , Betacoronavirus , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Humanos , Pneumonia Viral/epidemiologia , SARS-CoV-2 , Sensibilidade e EspecificidadeRESUMO
Inflammatory cell infiltrates are a prominent feature of aberrant vascular remodeling in pulmonary arterial hypertension (PAH), suggesting that immune effector cells contribute to disease progression. Genome-wide blood expression profiling studies have attempted to better define this inflammatory component of PAH pathobiology but have been hampered by small sample sizes, methodological differences, and very little gene-level reproducibility. The current meta-analysis (seven studies; 156 PAH patients/110 healthy controls) was performed to assess the comparability of data across studies and to possibly derive a generalizable transcriptomic signature. Idiopathic (IPAH) compared with disease-associated PAH (APAH) displayed highly similar expression profiles with no differentially expressed genes, even after substantially relaxing selection stringency. In contrast, using a false discovery rate of ≤1% and I2 < 40% (low-to-moderate heterogeneity across studies) both IPAH and APAH differed markedly from healthy controls with the combined PAH cohort yielding 1,269 differentially expressed, unique gene transcripts. Bioinformatic analyses, including gene-set enrichment, which uses all available data independent of gene selection thresholds, identified interferon, mammalian target of rapamycin/p70S6K, stress kinase, and Toll-like receptor signaling as enriched mechanisms within the PAH gene signature. Enriched biological functions and diseases included tumorigenesis, autoimmunity, antiviral response, and cell death consistent with prevailing theories of PAH pathogenesis. Although otherwise indistinguishable, APAH (predominantly PAH due to systemic sclerosis) had a somewhat stronger interferon profile than IPAH. Meta-analysis defined a robust and generalizable transcriptomic signature in the blood of PAH patients that can help inform the identification of biomarkers and therapeutic targets.
Assuntos
Hipertensão Pulmonar Primária Familiar/genética , Hipertensão Arterial Pulmonar/genética , Transcriptoma/genética , Biomarcadores/metabolismo , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Masculino , Reprodutibilidade dos TestesRESUMO
Th17 cells have been described as short lived, but this view is at odds with their capacity to trigger protracted damage to normal and transformed tissues. We report that Th17 cells, despite displaying low expression of CD27 and other phenotypic markers of terminal differentiation, efficiently eradicated tumors and caused autoimmunity, were long lived, and maintained a core molecular signature resembling early memory CD8(+) cells with stem cell-like properties. In addition, we found that Th17 cells had high expression of Tcf7, a direct target of the Wnt and ß-catenin signaling axis, and accumulated ß-catenin, a feature observed in stem cells. In vivo, Th17 cells gave rise to Th1-like effector cell progeny and also self-renewed and persisted as IL-17A-secreting cells. Multipotency was required for Th17 cell-mediated tumor eradication because effector cells deficient in IFN-γ or IL-17A had impaired activity. Thus, Th17 cells are not always short lived and are a less-differentiated subset capable of superior persistence and functionality.
Assuntos
Células-Tronco/metabolismo , Células Th17/imunologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Sobrevivência Celular/genética , Perfilação da Expressão Gênica , Interleucina-17/biossíntese , Camundongos , Camundongos Transgênicos , Neoplasias/imunologia , Células-Tronco/citologia , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Células Th1/citologia , Células Th1/imunologia , Células Th17/citologia , Células Th17/metabolismo , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismoRESUMO
OBJECTIVES: Administrative claims data are commonly used for sepsis surveillance, research, and quality improvement. However, variations in diagnosis, documentation, and coding practices for sepsis and organ dysfunction may confound efforts to estimate sepsis rates, compare outcomes, and perform risk adjustment. We evaluated hospital variation in the sensitivity of claims data relative to clinical data from electronic health records and its impact on outcome comparisons. DESIGN, SETTING, AND PATIENTS: Retrospective cohort study of 4.3 million adult encounters at 193 U.S. hospitals in 2013-2014. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Sepsis was defined using electronic health record-derived clinical indicators of presumed infection (blood culture draws and antibiotic administrations) and concurrent organ dysfunction (vasopressors, mechanical ventilation, doubling in creatinine, doubling in bilirubin to ≥ 2.0 mg/dL, decrease in platelets to < 100 cells/µL, or lactate ≥ 2.0 mmol/L). We compared claims for sepsis prevalence and mortality rates between both methods. All estimates were reliability adjusted to account for random variation using hierarchical logistic regression modeling. The sensitivity of hospitals' claims data was low and variable: median 30% (range, 5-54%) for sepsis, 66% (range, 26-84%) for acute kidney injury, 39% (range, 16-60%) for thrombocytopenia, 36% (range, 29-44%) for hepatic injury, and 66% (range, 29-84%) for shock. Correlation between claims and clinical data was moderate for sepsis prevalence (Pearson coefficient, 0.64) and mortality (0.61). Among hospitals in the lowest sepsis mortality quartile by claims, 46% shifted to higher mortality quartiles using clinical data. Using implicit sepsis criteria based on infection and organ dysfunction codes also yielded major differences versus clinical data. CONCLUSIONS: Variation in the accuracy of claims data for identifying sepsis and organ dysfunction limits their use for comparing hospitals' sepsis rates and outcomes. Using objective clinical data may facilitate more meaningful hospital comparisons.
Assuntos
Registros Eletrônicos de Saúde/estatística & dados numéricos , Insuficiência de Múltiplos Órgãos/diagnóstico , Insuficiência de Múltiplos Órgãos/epidemiologia , Indicadores de Qualidade em Assistência à Saúde/estatística & dados numéricos , Sepse/diagnóstico , Sepse/epidemiologia , Adulto , Feminino , Mortalidade Hospitalar , Humanos , Masculino , Pessoa de Meia-Idade , Insuficiência de Múltiplos Órgãos/mortalidade , Estudos Retrospectivos , Sepse/mortalidade , Estados UnidosRESUMO
Background: Resistance to all first-line antibiotics necessitates the use of less effective or more toxic "reserve" agents. Gram-negative bloodstream infections (GNBSIs) harboring such difficult-to-treat resistance (DTR) may have higher mortality than phenotypes that allow for ≥1 active first-line antibiotic. Methods: The Premier Database was analyzed for inpatients with select GNBSIs. DTR was defined as intermediate/resistant in vitro to all ß-lactam categories, including carbapenems and fluoroquinolones. Prevalence and aminoglycoside resistance of DTR episodes were compared with carbapenem-resistant, extended-spectrum cephalosporin-resistant, and fluoroquinolone-resistant episodes using CDC definitions. Predictors of DTR were identified. The adjusted relative risk (aRR) of mortality was examined for DTR, CDC-defined phenotypes susceptible to ≥1 first-line agent, and graded loss of active categories. Results: Between 2009-2013, 471 (1%) of 45011 GNBSI episodes at 92 (53.2%) of 173 hospitals exhibited DTR, ranging from 0.04% for Escherichia coli to 18.4% for Acinetobacter baumannii. Among patients with DTR, 79% received parenteral aminoglycosides, tigecycline, or colistin/polymyxin-B; resistance to all aminoglycosides occurred in 33%. Predictors of DTR included urban healthcare and higher baseline illness. Crude mortality for GNBSIs with DTR was 43%; aRR was higher for DTR than for carbapenem-resistant (1.2; 95% confidence interval, 1.0-1.4; P = .02), extended-spectrum cephalosporin-resistant (1.2; 1.1-1.4; P = .001), or fluoroquinolone-resistant (1.2; 1.0-1.4; P = .008) infections. The mortality aRR increased 20% per graded loss of active first-line categories, from 3-5 to 1-2 to 0. Conclusion: Nonsusceptibility to first-line antibiotics is associated with decreased survival in GNBSIs. DTR is a simple bedside prognostic measure of treatment-limiting coresistance.
Assuntos
Antibacterianos/uso terapêutico , Bacteriemia/epidemiologia , Farmacorresistência Bacteriana Múltipla , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/mortalidade , Adolescente , Adulto , Idoso , Bacteriemia/tratamento farmacológico , Carbapenêmicos/uso terapêutico , Bases de Dados Factuais , Feminino , Fluoroquinolonas/uso terapêutico , Bactérias Gram-Negativas/efeitos dos fármacos , Hospitais , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Prevalência , Prognóstico , Estudos Retrospectivos , Resultado do Tratamento , Estados Unidos/epidemiologia , Adulto JovemRESUMO
Glucocorticoids are commonly used to treat inflammatory disorders. The glucocorticoid receptor (GR) can tether to inflammatory transcription factor complexes, such as NFκB and AP-1, and trans-repress the transcription of cytokines, chemokines, and adhesion molecules. In contrast, aldosterone and the mineralocorticoid receptor (MR) primarily promote cardiovascular inflammation by incompletely understood mechanisms. Although MR has been shown to weakly repress NFκB, its role in modulating AP-1 has not been established. Here, the effects of GR and MR on NFκB and AP-1 signaling were directly compared using a variety of ligands, two different AP-1 consensus sequences, GR and MR DNA-binding domain mutants, and siRNA knockdown or overexpression of core AP-1 family members. Both GR and MR repressed an NFκB reporter without influencing p65 or p50 binding to DNA. Likewise, neither GR nor MR affected AP-1 binding, but repression or activation of AP-1 reporters occurred in a ligand-, AP-1 consensus sequence-, and AP-1 family member-specific manner. Notably, aldosterone interactions with both GR and MR demonstrated a potential to activate AP-1. DNA-binding domain mutations that eliminated the ability of GR and MR to cis-activate a hormone response element-driven reporter variably affected the strength and polarity of these responses. Importantly, MR modulation of NFκB and AP-1 signaling was consistent with a trans-mechanism, and AP-1 effects were confirmed for specific gene targets in primary human cells. Steroid nuclear receptor trans-effects on inflammatory signaling are context-dependent and influenced by nuclear receptor conformation, DNA sequence, and the expression of heterologous binding partners. Aldosterone activation of AP-1 may contribute to its proinflammatory effects in the vasculature.
Assuntos
NF-kappa B/imunologia , Receptores de Glucocorticoides/imunologia , Receptores de Mineralocorticoides/imunologia , Transdução de Sinais , Fator de Transcrição AP-1/imunologia , Sequência de Aminoácidos , Sequência de Bases , DNA/química , Expressão Gênica , Regulação da Expressão Gênica , Células HEK293 , Humanos , Inflamação/genética , Inflamação/imunologia , Mutação , Domínios Proteicos , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/genética , Receptores de Mineralocorticoides/química , Receptores de Mineralocorticoides/genéticaRESUMO
BACKGROUND: Shock frequently complicates necrotizing fasciitis (NF) caused by group A Streptococcus (GAS) or Staphylococcus aureus. Intravenous immunoglobulin (IVIG) is sometimes administered for presumptive toxic shock syndrome (TSS), but its frequency of use and efficacy are unclear. METHODS: Adult patients with NF and vasopressor-dependent shock undergoing surgical debridement from 2010 to 2014 were identified at 130 US hospitals. IVIG cases were propensity-matched and risk-adjusted. The primary outcome was in-hospital mortality and the secondary outcome was median length of stay (LOS). RESULTS: Of 4127 cases of debrided NF with shock at 121 centers, only 164 patients (4%) at 61 centers received IVIG. IVIG subjects were younger with lower comorbidity indices, but higher illness severity. Clindamycin and vasopressor intensity were higher among IVIG cases, as was coding for TSS and GAS. In-hospital mortality did not differ between matched IVIG and non-IVIG groups (crude mortality, 27.3% vs 23.6%; adjusted odds ratio, 1.00 [95% confidence interval, .55-1.83]; P = .99). Early IVIG (≤2 days) did not alter this effect (P = .99). Among patients coded for TSS, GAS, and/or S. aureus, IVIG use was still unusual (59/868 [6.8%]) and lacked benefit (P = .63). Median LOS was similar between IVIG and non-IVIG groups (26 [13-49] vs 26 [11-43]; P = .84). Positive predictive values for identifying true NF and debridement among IVIG cases using our algorithms were 97% and 89%, respectively, based on records review at 4 hospitals. CONCLUSIONS: Adjunctive IVIG was administered infrequently in NF with shock and had no apparent impact on mortality or hospital LOS beyond that achieved with debridement and antibiotics.