Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1151748, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795090

RESUMO

Background: Immune cell expression profiling from patient samples is critical for the successful development of immuno-oncology agents and is useful to understand mechanism-of-action, to identify exploratory biomarkers predictive of response, and to guide treatment selection and combination therapy strategies. LAG-3 is an inhibitory immune checkpoint that can suppress antitumor T-cell responses and targeting LAG-3, in combination with PD-1, is a rational approach to enhance antitumor immunity that has recently demonstrated clinical success. Here, we sought to identify human immune cell subsets that express LAG-3 and its ligands, to characterize the marker expression profile of these subsets, and to investigate the potential relationship between LAG-3 expressing subsets and clinical outcomes to immuno-oncology therapies. Methods: Comprehensive high-parameter immunophenotyping was performed using mass and flow cytometry of tumor-infiltrating lymphocytes (TILs) and peripheral blood mononuclear cells (PBMCs) from two independent cohorts of samples from patients with various solid tumor types. Profiling of circulating immune cells by single cell RNA-seq was conducted on samples from a clinical trial cohort of melanoma patients treated with immunotherapy. Results: LAG-3 was most highly expressed by subsets of tumor-infiltrating CD8 T central memory (TCM) and effector memory (TEM) cells and was frequently co-expressed with PD-1. We determined that these PD-1+ LAG-3+ CD8 memory T cells exhibited a unique marker profile, with greater expression of activation (CD69, HLA-DR), inhibitory (TIM-3, TIGIT, CTLA-4) and stimulatory (4-1BB, ICOS) markers compared to cells that expressed only PD-1 or LAG-3, or that were negative for both checkpoints. In contrast to tumors, LAG-3 expression was more limited in circulating immune cells from healthy donors and solid tumor patients. Additionally, we found abundant expression of the LAG-3 ligands MHC-II and galectin-3 in diverse immune cell types, whereas FGL1 and LSECtin were minimally expressed by immune cells in the tumor microenvironment (TME). Lastly, we found an inverse relationship between baseline and on-treatment levels of circulating LAG3 transcript-expressing CD8 memory T cells and response to combination PD-1 and CTLA-4 blockade in a clinical trial cohort of melanoma patients profiled by scRNAseq. Conclusions: These results provide insights into the nature of LAG-3- and ligand-expressing immune cells within the TME, and suggest a biological basis for informing mechanistic hypotheses, treatment selection strategies, and combination immunotherapy approaches to support continued development of dual PD-1 and LAG-3 blockade.


Assuntos
Melanoma , Receptor de Morte Celular Programada 1 , Humanos , Antígeno CTLA-4 , Receptor de Morte Celular Programada 1/metabolismo , Leucócitos Mononucleares , Imunofenotipagem , Ligantes , Microambiente Tumoral , Fibrinogênio/uso terapêutico
2.
Mol Cancer Ther ; 15(5): 946-57, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27037412

RESUMO

Dysregulated cellular apoptosis and resistance to cell death are hallmarks of neoplastic initiation and disease progression. Therefore, the development of agents that overcome apoptosis dysregulation in tumor cells is an attractive therapeutic approach. Activation of the extrinsic apoptotic pathway is strongly dependent on death receptor (DR) hyperclustering on the cell surface. However, strategies to activate DR5 or DR4 through agonistic antibodies have had only limited clinical success. To pursue an alternative approach for tumor-targeted induction of apoptosis, we engineered a bispecific antibody (BsAb), which simultaneously targets fibroblast-activation protein (FAP) on cancer-associated fibroblasts in tumor stroma and DR5 on tumor cells. We hypothesized that bivalent binding to both FAP and DR5 leads to avidity-driven hyperclustering of DR5 and subsequently strong induction of apoptosis in tumor cells but not in normal cells. Here, we show that RG7386, an optimized FAP-DR5 BsAb, triggers potent tumor cell apoptosis in vitro and in vivo in preclinical tumor models with FAP-positive stroma. RG7386 antitumor efficacy was strictly FAP dependent, was independent of FcR cross-linking, and was superior to conventional DR5 antibodies. In combination with irinotecan or doxorubicin, FAP-DR5 treatment resulted in substantial tumor regression in patient-derived xenograft models. FAP-DR5 also demonstrated single-agent activity against FAP-expressing malignant cells, due to cross-binding of FAP and DR5 across tumor cells. Taken together, these data demonstrate that RG7386, a novel and potent antitumor agent in both mono- and combination therapies, overcomes limitations of previous DR5 antibodies and represents a promising approach to conquer tumor-associated resistance to apoptosis. Mol Cancer Ther; 15(5); 946-57. ©2016 AACR.


Assuntos
Anticorpos Biespecíficos/metabolismo , Anticorpos Biespecíficos/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Gelatinases/metabolismo , Proteínas de Membrana/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Serina Endopeptidases/metabolismo , Animais , Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados , Afinidade de Anticorpos/imunologia , Antineoplásicos/imunologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Endopeptidases , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Gelatinases/imunologia , Humanos , Proteínas de Membrana/imunologia , Camundongos , Ligação Proteica/imunologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Serina Endopeptidases/imunologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cancer Res ; 71(16): 5535-45, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21705440

RESUMO

Although targeting the Ras/Raf/MEK pathway remains a promising anticancer strategy, mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase (MEK) inhibitors in clinical development are likely to be limited in their ability to produce durable clinical responses due to the emergence of acquired drug resistance. To identify potential mechanisms of such resistance, we established MEK inhibitor-resistant clones of human HT-29 colon cancer cells (HT-29R cells) that harbor the B-RafV600E mutation. HT-29R cells were specifically resistant to MEK inhibition in vitro and in vivo, with drug-induced elevation of MEK/ERK and their downstream targets primarily accountable for drug resistance. We identified MEK1(F129L) mutation as a molecular mechanism responsible for MEK/ERK pathway activation. In an isogenic cell system that extended these findings into other cancer cell lines, the MEK1(F129L) mutant exhibited higher intrinsic kinase activity than wild-type MEK1 [MEK1(WT)], leading to potent activation of ERK and downstream targets. The MEK1(F129L) mutation also strengthened binding to c-Raf, suggesting an underlying mechanism of higher intrinsic kinase activity. Notably, the combined use of Raf and MEK inhibitors overcame the observed drug resistance and exhibited greater synergy in HT-29R cells than the drug-sensitive HT-29 parental cells. Overall, our findings suggested that mutations in MEK1 can lead to acquired resistance in patients treated with MEK inhibitors and that a combined inhibition of Raf and MEK may be potentially useful as a strategy to bypass or prevent drug resistance in the clinic.


Assuntos
MAP Quinase Quinase 1/genética , Mutação , Neoplasias/genética , Proteínas Proto-Oncogênicas B-raf/genética , Sequência de Bases , Primers do DNA , Células HT29 , Humanos , Concentração Inibidora 50 , MAP Quinase Quinase 1/antagonistas & inibidores , Neoplasias/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Mol Cancer Ther ; 9(1): 134-44, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20053779

RESUMO

Targeting the Ras/Raf/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway represents a promising anticancer strategy. Recently, we have reported a novel class of potent and selective non-ATP-competitive MEK1/2 inhibitors with a unique structure and mechanism of action. RO5068760 is a representative of this class showing significant efficacy in a broad spectrum of tumors with aberrant mitogen-activated protein kinase pathway activation. To understand the relationship between systemic exposures and target (MEK1/2) inhibition as well as tumor growth inhibition, the current study presents a detailed in vivo characterization of efficacy, pharmacokinetics, and pharmacodynamics of RO5068760 in multiple xenograft tumor models. For inhibition of MEK1/2 as measured by the phosphorylated ERK levels, the estimated EC(50)s in plasma were 1.36 micromol/L (880 ng/mL) and 3.35 micromol/L (2168 ng/mL) in LOX melanoma and HT-29 colorectal cancer models, respectively. A similar EC(50) (1.41 micromol/L or 915 ng/mL) was observed in monkey peripheral blood lymphocytes. To achieve tumor growth inhibition (>or=90%), an average plasma drug concentration of 0.65 or 5.23 micromol/L was required in B-RafV600E or K-Ras mutant tumor models, respectively, which were remarkably similar to the IC(90) values (0.64 or 4.1 micromol/L) determined in vitro for cellular growth inhibition. With equivalent in vivo systemic exposures, RO5068760 showed superior efficacy in tumors harboring B-RafV600E mutation. The plasma concentration time profiles indicate that constant p-ERK suppression (>50%) may not be required for optimal efficacy, especially in highly responsive tumors. This study may facilitate future clinical trial design in using biochemical markers for early proof of mechanism and in selecting the right patients and optimal dose regimen.


Assuntos
Imidazolidinas/farmacologia , Imidazolidinas/farmacocinética , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Fenilbutiratos/farmacologia , Fenilbutiratos/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imidazolidinas/sangue , Imidazolidinas/química , Macaca fascicularis , Camundongos , Camundongos Nus , Fenilbutiratos/sangue , Fenilbutiratos/química , Inibidores de Proteínas Quinases/sangue , Inibidores de Proteínas Quinases/química
5.
Cancer Res ; 69(5): 1924-32, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19244124

RESUMO

The mitogen-activated protein kinase (MAPK) signal transduction pathway plays a central role in regulating tumor cell growth, survival, differentiation, and angiogenesis. The key components of the Ras/Raf/MEK/ERK signal module are frequently altered in human cancers. Targeting this pathway represents a promising anticancer strategy. Small molecule inhibitors targeting MEK1/2 have shown promise in the clinic; however, ultimate clinical proof-of-concept remains elusive. Here, we report a potent and highly selective non-ATP-competitive MEK1/2 inhibitor, RO4927350, with a novel chemical structure and unique mechanism of action. It selectively blocks the MAPK pathway signaling both in vitro and in vivo, which results in significant antitumor efficacy in a broad spectrum of tumor models. Compared with previously reported MEK inhibitors, RO4927350 inhibits not only ERK1/2 but also MEK1/2 phosphorylation. In cancer cells, high basal levels of phospho-MEK1/2 rather than phospho-ERK1/2 seem to correlate with greater sensitivity to RO4927350. Furthermore, RO4927350 prevents a feedback increase in MEK phosphorylation, which has been observed with other MEK inhibitors. We show that B-Raf rather than C-Raf plays a critical role in the feedback regulation. The unique MAPK signaling blockade mediated by RO4927350 in cancer may reduce the risk of developing drug resistance. Thus, RO4927350 represents a novel therapeutic modality in cancers with aberrant MAPK pathway activation.


Assuntos
Antineoplásicos/farmacologia , Imidazóis/farmacologia , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Tiazóis/farmacologia , Animais , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macaca fascicularis , Camundongos , Fosforilação
6.
Cancer Res ; 68(4): 1162-9, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18281492

RESUMO

The phosphatase of regenerating liver (PRL) family, a unique class of oncogenic phosphatases, consists of three members: PRL-1, PRL-2, and PRL-3. Aberrant overexpression of PRL-3 has been found in multiple solid tumor types. Ectopic expression of PRLs in cells induces transformation, increases mobility and invasiveness, and forms experimental metastases in mice. We have now shown that small interfering RNA-mediated depletion of PRL expression in cancer cells results in the down-regulation of p130Cas phosphorylation and expression and prevents tumor cell anchorage-independent growth in soft agar. We have also identified a small molecule, 7-amino-2-phenyl-5H-thieno[3,2-c]pyridin-4-one (thienopyridone), which potently and selectively inhibits all three PRLs but not other phosphatases in vitro. The thienopyridone showed significant inhibition of tumor cell anchorage-independent growth in soft agar, induction of the p130Cas cleavage, and anoikis, a type of apoptosis that can be induced by anticancer agents via disruption of cell-matrix interaction. Unlike etoposide, thienopyridone-induced p130Cas cleavage and apoptosis were not associated with increased levels of p53 and phospho-p53 (Ser(15)), a hallmark of genotoxic drug-induced p53 pathway activation. This is the first report of a potent selective PRL inhibitor that suppresses tumor cell three-dimensional growth by a novel mechanism involving p130Cas cleavage. This study reveals a new insight into the role of PRL-3 in priming tumor progression and shows that PRL may represent an attractive target for therapeutic intervention in cancer.


Assuntos
Proteína Substrato Associada a Crk/metabolismo , Inibidores Enzimáticos/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Anoikis/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Células Endoteliais/efeitos dos fármacos , Células HT29 , Células HeLa , Humanos , Camundongos , Dados de Sequência Molecular , Proteínas de Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Tirosina Fosfatases/genética , Piridinas/farmacologia , RNA Interferente Pequeno/genética , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Cell Physiol ; 204(2): 560-6, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15799031

RESUMO

Understanding altered gene expression in osteoarthritic cartilage can lead to new targets for drug intervention. We established a functional assay based on chondrocyte cluster formation, a phenotype associated with osteoarthritis (OA), to screen an OA cartilage gene library. Previous reports have demonstrated that normal chondrocytes grown in suspension culture maintain their chondrocytic phenotype, however, certain growth factors such as basic fibroblast growth factor (bFGF) will induce the cells to proliferate in tight clusters similar to those seen in osteoarthritic cartilage. In this study we validate that overexpression of bFGF by retrovirally transduced normal chondrocytes would similarly induce the proliferation of tight cell clusters. We then used this approach as a basis to set up a functional screen where an entire OA cartilage cDNA library was tranduced into normal chondrocytes to search for other genes that would also induce cluster formation. Seven potential genes were isolated from the OA gene library, including BPOZ, IL-17 receptor C, NADH ubiquinone oxidoreductase, COMP, Soluble carrier 16 (MCT 3), C1r, and bFGF itself. None of the identified genes were upregulated by bFGF, however, all of them upregulated the expression of bFGF suggesting a common pathway. Although cluster formation is not considered to be destructive in OA cartilage, it is consistent with the disease and could yield answers to the altered phenotype. Further studies are needed to elucidate how these genes are linked to the disease state.


Assuntos
Condrócitos/metabolismo , Técnicas Citológicas , Perfilação da Expressão Gênica/métodos , Osteoartrite/metabolismo , Cartilagem Articular , Agregação Celular , Divisão Celular , Células Cultivadas , Condrócitos/fisiologia , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Expressão Gênica , Biblioteca Gênica , Vetores Genéticos , Humanos , Osteoartrite/genética , Retroviridae/genética , Sefarose , Transdução Genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa