Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Inorg Chem ; 62(18): 6981-6992, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37120857

RESUMO

The quaternary compound Cs2Pb(MoO4)2 was synthesized and its structure was characterized using X-ray and neutron diffraction from 298 to 773 K, while thermal expansion was studied from 298 to 723 K. The crystal structure of the high-temperature phase ß-Cs2Pb(MoO4)2 was elucidated, and it was found to crystallize in the space group R3̅m (No. 166), i.e., with a palmierite structure. In addition, the oxidation state of Mo in the low-temperature phase α-Cs2Pb(MoO4)2 was studied using X-ray absorption near-edge structure spectroscopy. Phase diagram equilibrium measurements in the Cs2MoO4-PbMoO4 system were performed, revisiting a previously reported phase diagram. The equilibrium phase diagram proposed here includes a different composition of the intermediate compound in this system. The obtained data can serve as relevant information for thermodynamic modeling in view of the safety assessment of next-generation lead-cooled fast reactors.

2.
Environ Sci Technol ; 57(9): 3661-3670, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36827231

RESUMO

The chemistry of technetium (t1/2(99Tc) = 2.11 × 105 years) is of particular importance in the context of nuclear waste disposal and historic contaminated sites. Polycarboxylate ligands may be present in some sites and are potentially capable of strong complexing interactions, thus increasing the solubility and mobility of 99Tc under environmentally relevant conditions. This work aimed to determine the impact of five organic complexing ligands [L = oxalate, phthalate, citrate, nitrilotriacetate (NTA), and ethylenediaminetetraacetate (EDTA)] under anoxic, alkaline conditions (pH ≈ 9-13) on the solubility of technetium. X-ray absorption spectroscopy confirmed that TcO2(am,hyd) remained the solubility-controlling solid phase in undersaturation solubility experiments. Ligands with maximum coordination numbers (CN) ≥ 3 (EDTA, NTA, and citrate) exhibited an increase in solubility from pH 9 to 11, while ligands with CN ≤ 2 (oxalate and phthalate) at all investigated pH and CN ≥ 3 at pH ≈ 13 were outcompeted by hydrolysis reactions. Though most available thermodynamic values were determined under acidic conditions, these models satisfactorily explained high-pH undersaturation solubility of technetium for citrate and NTA, whereas experimental data for Tc(IV)-EDTA were highly overestimated. This work illustrates the predominance of hydrolysis under hyperalkaline conditions and provides experimental support for existing thermodynamic models of Tc-L except Tc-EDTA, which requires further research regarding aqueous speciation and solubility.


Assuntos
Ácidos Carboxílicos , Tecnécio , Ácido Edético/química , Tecnécio/química , Solubilidade , Ligantes , Ácidos Carboxílicos/química , Citratos , Oxirredução
3.
Environ Sci Technol ; 57(25): 9376-9384, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37319326

RESUMO

Green rust (GR), a layered double hydroxide (LDH) containing Fe, and magnetite can be found in natural and engineered environments. The ability of chloride GR (GR-Cl) and magnetite to retain iodide as a function of various parameters was investigated. Sorption equilibrium is achieved within 1 day of contact time between iodide and preformed GR-Cl in suspension. pHm variations (7.5-8.5) have no significant influence, but the iodide sorption decreases with increasing ionic strength set by NaCl. Sorption isotherms of iodide suggest that the uptake operates via ionic exchange (IC), which is supported by geochemical modeling. The short-range binding environment of iodide associated with GR is comparable to that of hydrated aqueous iodide ions in solution and is not affected by pHm or ionic strength. This finding hints at an electrostatic interaction with the Fe octahedral sheet, consistent with weak binding of charge balancing anions within an LDH interlayer. The presence of sulfate anions in significant amounts inhibits the iodide uptake due to recrystallization to a different crystal structure. Finally, the transformation of iodide-bearing GR-Cl into magnetite and ferrous hydroxide resulted in a quantitative release of iodide into the aqueous phase, suggesting that neither transformation product has an affinity for this anionic species.


Assuntos
Cloretos , Óxido Ferroso-Férrico , Óxido Ferroso-Férrico/química , Cloretos/química , Iodetos , Hidróxidos
4.
Environ Sci Technol ; 57(30): 11185-11194, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37460108

RESUMO

In this study, Np(V) retention on Illite du Puy (IdP) was investigated since it is essential for understanding the migration behavior of Np in argillaceous environments. The presence of structural Fe(III) and Fe(II) in IdP was confirmed by Fe K-edge X-ray absorption near-edge structure (XANES) and 57Fe Mössbauer spectroscopy. In batch sorption experiments, a higher Np sorption affinity to IdP was found than to Wyoming smectite or iron-free synthetic montmorillonite. An increase of the relative Np(IV) ratio sorbed onto IdP with decreasing pH was observed by solvent extraction (up to (24 ± 2)% at pH 5, c0(Np) = 10-6 mol/L). Furthermore, up to (33 ± 5)% Np(IV) could be detected in IdP diffusion samples at pH 5. Respective Np M5-edge high-energy resolution (HR-) XANES spectra suggested the presence of Np(IV/V) mixtures and weakened axial bond covalency of the NpO2+ species sorbed onto IdP. Np L3-edge extended X-ray absorption fine structure (EXAFS) analysis showed that significant fractions of Np were coordinated to Fe─O entities at pH 9. This highlights the potential role of Fe(II/III) clay edge sites as a strong Np(V) surface complex partner and points to the partial reduction of sorbed Np(V) to Np(IV) via structural Fe(II).


Assuntos
Compostos Férricos , Minerais , Minerais/química , Bentonita/química , Compostos Ferrosos/química
5.
Phys Chem Chem Phys ; 25(3): 1819-1826, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36601876

RESUMO

The physicochemical properties of a choline chloride (ChCl) and formic acid (FA) mixture (1 : 2 molar ratio) have been studied over a broad range of temperatures (-140 to 60 °C). Differential scanning calorimetry has shown that the examined system remains in the liquid state at very low temperatures - a glass transition is observed in the range of -125 °C to -90 °C. The kinematic viscosity, ionic conductivity and the width of the electrochemical window determined for this system revealed its beneficial electrochemical properties. This indicates the suitability of ChCl : FA electrolytes in electrochemical measurements. In this non-aqueous electrolyte, electrochemical reduction of Tc(VII) ions has been studied for the first time. Cyclic voltammetry and chronopotentiometry experiments revealed that the electroreduction of pertechnetates is a multi-path process which leads to the formation of a Tc(IV) ionic form. X-Ray absorption spectroscopy of the latter revealed its structure as a TcCl62- complex.

6.
J Synchrotron Radiat ; 29(Pt 1): 80-88, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34985425

RESUMO

The ACT experimental station of the CAT-ACT wiggler beamline at the Karlsruhe Institute of Technology (KIT) Light Source is dedicated to the investigation of radionuclide materials with radioactivities up to 1000000 times the exemption limit by various speciation techniques applying monochromatic X-rays. In this article, the latest technological developments at the ACT station that enable high-resolution X-ray absorption near-edge structure (HR-XANES) spectroscopy for low radionuclide loading samples are highlighted - encompassing the investigation of actinide elements down to 1 p.p.m. concentration - combined with a cryogenic sample environment reducing beam-induced sample alterations. One important part of this development is a versatile gas tight plexiglass encasement ensuring that all beam paths in the five-analyzer-crystal Johann-type X-ray emission spectrometer run within He atmosphere. The setup enables the easy exchange between different experiments (conventional X-ray absorption fine structure, HR-XANES, high-energy or wide-angle X-ray scattering, tender to hard X-ray spectroscopy) and opens up the possibility for the investigation of environmental samples, such as specimens containing transuranium elements from contaminated land sites or samples from sorption and diffusion experiments to mimic the far field of a breached nuclear waste repository.

7.
J Synchrotron Radiat ; 28(Pt 1): 214-223, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33399571

RESUMO

The two-dimensional wide-angle X-ray diffraction technique was applied to a Cm-doped borosilicate glass in a beryllium container. The experiment involved a high-energy X-ray beam and an image plate. It is shown that it is possible to extract the structure factor of the radioactive glass successfully from diffraction patterns and compare it with that of the pristine one. Striking differences appear under the first diffraction peak, revealing new sub-structures for the radioactive glass. It is suggested that they could be related to structural changes in the medium-range order, in particular the size distribution of rings or chains under the influence of mixed interactions between the glass network, α-particles and recoil nuclei.

8.
J Synchrotron Radiat ; 28(Pt 6): 1684-1691, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738922

RESUMO

The U-O phase diagram is of paramount interest for nuclear-related applications and has therefore been extensively studied. Experimental data have been gathered to feed the thermodynamic calculations and achieve an optimization of the U-O system modelling. Although considered as well established, a critical assessment of this large body of experimental data is necessary, especially in light of the recent development of new techniques applicable to actinide materials. Here we show how in situ X-ray absorption near-edge structure (XANES) is suitable and relevant for phase diagram determination. New experimental data points have been collected using this method and discussed in regard to the available data. Comparing our experimental data with thermodynamic calculations, we observe that the current version of the U-O phase diagram misses some experimental data in specific domains. This lack of experimental data generates inaccuracy in the model, which can be overcome using in situ XANES. Indeed, as shown in the paper, this method is suitable for collecting experimental data in non-ambient conditions and for multiphasic systems.

9.
Inorg Chem ; 60(16): 12285-12298, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34328309

RESUMO

The combination of wet-chemistry experiments (measurements of pH, Eh, and [Tc]) and advanced spectroscopic techniques (K- and L3-edge X-ray absorption fine structure spectroscopy) confirms the formation of a very stable Tc(V)-gluconate complex under anoxic conditions. In the presence of gluconate and an excess of Sn(II) (at pe + pH ≈ 2), technetium forms a very stable Tc(IV)-gluconate complex significantly enhancing the solubility defined by TcO2(s) in hyperalkaline gluconate-free systems. A new setup for "tender" X-ray spectroscopy (spectral range, ∼2-5 keV) in transmission or total fluorescence yield detection mode based on a He flow cell has been developed at the INE Beamline for radionuclide science (KIT light source). This setup allows handling of radioactive specimens with total activities up to one million times the exemption limit. For the first time, Tc L3-edge measurements (∼2.677 keV) of Tc species in liquid (aqueous) media are reported, clearly outperforming conventional K-edge spectroscopy as a tool to differentiate Tc oxidation states and coordination environments. The coupling of L3-edge X-ray absorption near-edge spectroscopy measurements and relativistic multireference ab initio methods opens new perspectives in the definition of chemical and thermodynamic models for systems of relevance in the context of nuclear waste disposal, environmental, and pharmaceutical applications.

10.
Inorg Chem ; 60(24): 18674-18686, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34821502

RESUMO

The complexation of Np(V) with malonate and succinate is studied by different spectroscopic techniques, namely, attenuated total reflection Fourier transform infrared (ATR FT-IR) and extended X-ray absorption fine-structure (EXAFS) spectroscopy, as well as by quantum chemistry to determine the speciation, thermodynamic data, and structural information of the formed complexes. For complex stoichiometries and the thermodynamic functions (log ßn°(Θ), ΔrHn°, ΔrSn°), near infrared absorption spectroscopy (vis/NIR) is applied. The complexation reactions are investigated as a function of the total concentration of malonate ([Mal2-]total) and succinate ([Succ2-]total), ionic strength [Im = 0.5-4.0 mol kg-1 Na+(Cl-/ClO4-)], and temperature (Θ = 20-85 °C). Besides the solvated NpO2+ ion, the formation of two Np(V) species with the stoichiometry NpO2(L)n1-2n (n = 1, 2, L = Mal2-, Succ2-) is observed. With increasing temperature, the molar fractions of both complex species increase and the temperature-dependent conditional stability constants log ßn'(Θ) at given ionic strengths are determined by the law of mass action. The log ßn'(Θ) are extrapolated to IUPAC reference-state conditions (Im = 0) according to the specific ion interaction theory (SIT), revealing thermodynamic log ßn°(Θ) values. For all formed complexes, [NpO2(Mal)-: log ß1°(25 °C) = 3.36 ± 0.11, NpO2(Mal)23-: log ß2°(25 °C) = 3.95 ± 0.19, NpO2(Succ)-: log ß1°(25 °C) = 2.05 ± 0.45, NpO2(Succ)23-: log ß2°(25 °C) = 0.75 ± 1.22], an increase of the stability constants with increasing temperature was observed. This confirmed an endothermic complexation reaction. The temperature dependence of the log ßn°(T) values is described by the integrated Van't Hoff equation, and the standard reaction enthalpies and entropies for the complexation reactions are determined. Furthermore, the sum of the specific binary ion-ion interaction coefficients Δεn°(Θ) for the complexation reactions are obtained as a function of the t from the respective SIT modeling as a function of the temperature. In addition to the thermodynamic data, the structures of the complexes and the coordination modes of malonate and succinate are investigated using EXAFS spectroscopy, ATR-FT-IR spectroscopy, and quantum chemical calculations. The results show that in the case of malonate, six-membered chelate complexes are formed, whereas for succinate, seven-membered rings form. The latter ones are energetically unfavorable due to the limited space in the equatorial plane of the Np(V) ion (as NpO2+ cation).

11.
Inorg Chem ; 59(9): 6067-6077, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32282193

RESUMO

The temperature and ionic strength dependences of the complex formation of NpO2+ with formate in aqueous solution are studied by absorption spectroscopy (Im = 0.5-4.0 mol kg-1, T = 20-85 °C, [Form-]total = 0-0.65 mol kg-1), extended X-ray absorption fine structure spectroscopy (EXAFS) and quantum chemical methods. The complex stoichiometry and the thermodynamic functions of the complexation reactions are determined by peak deconvolution of the absorption spectra and slope analyses. Besides the solvated NpO2+ ion, two NpO2+ formate species (NpO2(Form)n1-n; n = 1, 2) are identified. Application of the law of mass action yields the temperature dependent conditional stability constants log ß'n(T) at a given ionic strength. These data are extrapolated to IUPAC reference state conditions (Im = 0) using the specific ion interaction theory (SIT). The results show, that log ß01(20 °C) = 0.67 ± 0.04 decreases by approximately 0.1 logarithmic units with increasing temperature, log ß02(20 °C) = 0.11 ± 0.11 increases by about 0.2 logarithmic units. The temperature dependence of the log ß0n(T) values is modeled with the integrated Van't Hoff equation yielding the standard reaction enthalpy ΔrH0 and entropy ΔrS0 of the complexation reactions. The results show that the formation of NpO2(Form) is exothermic (ΔrH01 = -2.8 ± 0.9 kJ mol-1) whereas the formation of NpO2(Form)2- is endothermic (ΔrH02 = 6.7 ± 4.1 kJ mol-1). Furthermore, the binary ion-ion interaction coefficients εT(i,k) of the formed complexes are determined in NaClO4 and NaCl media as a function of the temperature. The coordination mode of formate toward the metal ion is investigated by EXAFS spectroscopy and quantum chemical calculations. A coordination of the ligand via only one O atom of formate to the metal ion is identified.

12.
J Synchrotron Radiat ; 26(Pt 1): 124-136, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30655477

RESUMO

The development at the Delft University of Technology (TU Delft, The Netherlands) of an experimental set-up dedicated to high-temperature in situ EXAFS measurements of radioactive, air-sensitive and corrosive fluoride salts is reported. A detailed description of the sample containment cell, of the furnace design, and of the measurement geometry allowing simultaneous transmission and fluorescence measurements is given herein. The performance of the equipment is tested with the room-temperature measurement of thorium tetrafluoride, and the Th-F and Th-Th bond distances obtained by fitting of the EXAFS data are compared with the ones extracted from a refinement of neutron diffraction data collected at the PEARL beamline at TU Delft. The adequacy of the sample confinement is checked with a mapping of the thorium concentration profile of molten salt material. Finally, a few selected salt mixtures (LiF:ThF4) = (0.9:0.1), (0.75:0.25), (0.5:0.5) and (NaF:ThF4) = (0.67:0.33), (0.5:0.5) are measured in the molten state. Qualitative trends along the series are discussed, and the experimental data for the (LiF:ThF4) = (0.5:0.5) composition are compared with the EXAFS spectrum generated from molecular dynamics simulations.

13.
Chemistry ; 25(21): 5507-5513, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30720905

RESUMO

When considering f elements, solvent extraction is primarily used for the removal of lanthanides from ore and their recycling, as well as for the separation of actinides from used nuclear fuel. Understanding the complexation mechanism of metal ions with organic extractants, particularly the influence of their molecular structure on complex formation is of fundamental importance. Herein, we report an extraordinary (up to two orders of magnitude) change in the extraction efficiency of f elements with two diastereomers of dimethyl tetraoctyl diglycolamide (Me2 -TODGA), which only differ in the orientation of a single methyl group. Solvent extraction techniques, extended X-ray absorption fine structure (EXAFS) measurements, and density functional theory (DFT) based ab initio calculations were used to understand their complex structures and to explain their complexation mechanism. We show that the huge differences observed in extraction selectivity results from a small change in the complexation of nitrate counter-ions caused by the different orientation of one methyl group in the backbone of the extractant. The obtained results give a significant new insight into metal-ligand complexation mechanisms, which will promote the development of more efficient separation techniques.

14.
Inorg Chem ; 57(23): 14890-14894, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30411877

RESUMO

Most materials expand with temperature because of the anharmonicity of lattice vibration, and only a few shrink with increasing temperature. UO2, whose thermal properties are of significant importance for the safe use of nuclear energy, was considered for a long time to belong to the first group. This view was challenged by recent in situ synchrotron X-ray diffraction measurements, showing an unusual thermal decrease of the U-O distances. This thermal shrinkage was interpreted as a consequence of the splitting of the U-O distances due to a change in the U local order from Fm3̅ m to Pa3̅. In contrast to these previous investigations and using an element-specific synchrotron-based spectroscopic method, we show here that the U sublattice remains locally of the fluorite type from 50 to 1265 K, and that the decrease of the first U-O bond lengths is associated with an increase of the disorder.

15.
Inorg Chem ; 56(22): 13982-13990, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29087699

RESUMO

Pu(III), Pu(IV), and a higher oxidation state of Pu, likely Pu(VI), are for the first time characterized simultaneously present in a borosilicate glass using Pu M5 edge high energy resolution X-ray absorption near edge structure (HR-XANES) technique. We illustrate that the method can be very efficiently used to determine Pu oxidation states, which control the solubility limit of Pu in a glass matrix. HR-XANES results show that the addition of excess Si3N4 is not sufficient for complete reduction of Pu to Pu(III), which has a relatively high solubility limit (9-22 wt % Pu) due to its network-modifying behavior in glasses. We provide evidence that the initially added Pu(VI) might be partly preserved during vitrification at 1200/1400 °C in Ar atmosphere. Pu(VI) could be very advantageous for vitrification of Pu-rich wastes, since it might reach solubility limits of 40 wt % comparable to U(VI).

16.
Environ Sci Technol ; 51(4): 2217-2225, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28094921

RESUMO

Uranium redox states and speciation in magnetite nanoparticles coprecipitated with U(VI) for uranium loadings varying from 1000 to 10 000 ppm are investigated by X-ray absorption spectroscopy (XAS). It is demonstrated that the U M4 high energy resolution X-ray absorption near edge structure (HR-XANES) method is capable to clearly characterize U(IV), U(V), and U(VI) existing simultaneously in the same sample. The contributions of the three different uranium redox states are quantified with the iterative transformation factor analysis (ITFA) method. U L3 XAS and transmission electron microscopy (TEM) reveal that initially sorbed U(VI) species recrystallize to nonstoichiometric UO2+x nanoparticles within 147 days when stored under anoxic conditions. These U(IV) species oxidize again when exposed to air. U M4 HR-XANES data demonstrate strong contribution of U(V) at day 10 and that U(V) remains stable over 142 days under ambient conditions as shown for magnetite nanoparticles containing 1000 ppm U. U L3 XAS indicates that this U(V) species is protected from oxidation likely incorporated into octahedral magnetite sites. XAS results are supported by density functional theory (DFT) calculations. Further characterization of the samples include powder X-ray diffraction (pXRD), scanning electron microscopy (SEM) and Fe 2p X-ray photoelectron spectroscopy (XPS).


Assuntos
Nanopartículas de Magnetita , Urânio/química , Oxirredução , Espectroscopia Fotoeletrônica , Espectroscopia por Absorção de Raios X
17.
Environ Sci Technol ; 49(22): 13139-48, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26488884

RESUMO

Technetium, uranium, and neptunium are contaminants that cause concern at nuclear facilities due to their long half-life, environmental mobility, and radiotoxicity. Here we investigate the impact of microbial reduction of Fe(III) in biotite and chlorite and the role that this has in enhancing mineral reactivity toward soluble TcO4(-), UO2(2+), and NpO2(+). When reacted with unaltered biotite and chlorite, significant sorption of U(VI) occurred in low carbonate (0.2 mM) buffer, while U(VI), Tc(VII), and Np(V) showed low reactivity in high carbonate (30 mM) buffer. On reaction with the microbially reduced minerals, all radionuclides were removed from solution with U(VI) reactivity influenced by carbonate. Analysis by X-ray absorption spectroscopy (XAS) confirmed reductive precipitation to poorly soluble U(IV) in low carbonate conditions and both Tc(VII) and Np(V) in high carbonate buffer were also fully reduced to poorly soluble Tc(IV) and Np(IV) phases. U(VI) reduction was inhibited under high carbonate conditions. Furthermore, EXAFS analysis suggested that in the reaction products, Tc(IV) was associated with Fe, Np(IV) formed nanoparticulate NpO2, and U(IV) formed nanoparticulate UO2 in chlorite and was associated with silica in biotite. Overall, microbial reduction of the Fe(III) associated with biotite and chlorite primed the minerals for reductive scavenging of radionuclides: this has clear implications for the fate of radionuclides in the environment.


Assuntos
Silicatos de Alumínio/metabolismo , Bactérias/metabolismo , Cloretos/metabolismo , Compostos Ferrosos/metabolismo , Netúnio/química , Tecnécio/química , Urânio/química , Minerais/química , Netúnio/isolamento & purificação , Oxirredução , Soluções , Tecnécio/isolamento & purificação , Urânio/isolamento & purificação , Espectroscopia por Absorção de Raios X
18.
Inorg Chem ; 53(2): 1062-9, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24383499

RESUMO

The complexation of trivalent actinides (An(III)) with chloride is studied in the temperature range from 25 to 200 °C by spectroscopic methods. Time-resolved laser fluorescence spectroscopy (TRLFS) is applied to determine the thermodynamic data of Cm(III)-Cl(-) complexes, while extended X-ray absorption fine structure spectroscopy (EXAFS) is used to determine the structural data of the respective Am(III) complexes. The experiments are performed in a custom-built high-temperature cell which is modified for the respective spectroscopic technique. The TRLFS results show that at 25 °C the speciation is dominated mainly by the Cm(3+) aquo ion. Only a minor fraction of the CmCl(2+) complex is present in solution. As the temperature increases, the fraction of this species decreases further. Simultaneously, the fraction of the CmCl2(+) complex increases strongly with the temperature. Also, the CmCl3 complex is formed to a minor extent at T > 160 °C. The conditional stability constant log ß'2 is determined as a function of the temperature and extrapolated to zero ionic strength with the specific ion interaction theory approach. The log ß°2(T) values increase by more than 3 orders of magnitude in the studied temperature range. The temperature dependency of log ß°2 is fitted by the extended van't Hoff equation to determine ΔrH°m, ΔrS°m, and ΔrC°p,m. The EXAFS results support these findings. The results confirm the absence of americium(III) chloride complexes at T = 25 and 90 °C ([Am(III)] = 10(-3) m, [Cl(-)] = 3.0 m), and the spectra are described by 9-10 oxygen atoms at a distance of 2.44-2.48 Å. At T = 200 °C two chloride ligands are present in the inner coordination sphere of Am(III) at a distance of 2.78 Å.

19.
Sci Rep ; 13(1): 5877, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041164

RESUMO

Mobility and bioavailability of radionuclides in the environment strongly depend on their aqueous speciation, adsorption behavior and the solubility of relevant solid phases. In the present context, we focus on naturally occurring Th-232 at a location in central Sri Lanka presenting high background radiation levels. Four different soil samples were characterized using X-ray Absorption Spectroscopy (XAS) at the Th L3-edge (16.3 keV), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) spectroscopy. X-ray Absorption Near Edge Structure (XANES) spectra are applied as a fingerprint indication for Th existing in different chemical environments. Linear combination fitting (LCF) of the Extended X-ray Absorption Fine Structure (EXAFS) data involving reference Th-monazite (phosphate) and thorianite (oxide) compounds suggested that Th is mostly present as Th-phosphate (76 ± 2%) and Th-oxide (24 ± 2%), even though minor amounts of thorite (silicate) were also detected by SEM-EDX. Further studies on selected individual particles using micro-focus X-ray Fluorescence (µ-XRF) and micro-X-ray Absorption Spectroscopy (µ-XAS) along with SEM-EDX elemental mapping provided information about the nature of Th-bearing mineral particles regarding mixed phases. This is the first study providing quantitative and XAS based speciation information on Th-mineral phases in soil samples from Sri Lanka.

20.
Langmuir ; 28(8): 3845-51, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22313032

RESUMO

One of the most toxic byproducts of nuclear power and weapons production is the transuranics, which have a high radiotoxicity and long biological half-life due to their tendency to accumulate in the skeletal system. This accumulation is inhomogeneous and has been associated with the chemical properties and structure of the bone material rather than its location or function. This suggests a chemical driving force to incorporation and requires an atomic scale mechanistic understanding of the incorporation process. Here we propose a new incorporation mechanism for trivalent actinides and lanthanides into synthetic and biologically produced hydroxyapatite. Time-resolved laser fluorescence spectroscopy and extended X-ray absorption fine structure have been used to demonstrate that trivalent actinides and lanthanides incorporate into the amorphous grain boundaries of apatite. This incorporation site can be used to explain patterns in uptake and distribution of radionuclides in the mammalian skeletal system.


Assuntos
Elementos da Série Actinoide/química , Durapatita/química , Elementos da Série dos Lantanídeos/química , Espectrometria de Fluorescência , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa