Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain ; 142(11): 3550-3564, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31608359

RESUMO

Traumatic microbleeds are small foci of hypointensity seen on T2*-weighted MRI in patients following head trauma that have previously been considered a marker of axonal injury. The linear appearance and location of some traumatic microbleeds suggests a vascular origin. The aims of this study were to: (i) identify and characterize traumatic microbleeds in patients with acute traumatic brain injury; (ii) determine whether appearance of traumatic microbleeds predict clinical outcome; and (iii) describe the pathology underlying traumatic microbleeds in an index patient. Patients presenting to the emergency department following acute head trauma who received a head CT were enrolled within 48 h of injury and received a research MRI. Disability was defined using Glasgow Outcome Scale-Extended ≤6 at follow-up. All magnetic resonance images were interpreted prospectively and were used for subsequent analysis of traumatic microbleeds. Lesions on T2* MRI were stratified based on 'linear' streak-like or 'punctate' petechial-appearing traumatic microbleeds. The brain of an enrolled subject imaged acutely was procured following death for evaluation of traumatic microbleeds using MRI targeted pathology methods. Of the 439 patients enrolled over 78 months, 31% (134/439) had evidence of punctate and/or linear traumatic microbleeds on MRI. Severity of injury, mechanism of injury, and CT findings were associated with traumatic microbleeds on MRI. The presence of traumatic microbleeds was an independent predictor of disability (P < 0.05; odds ratio = 2.5). No differences were found between patients with punctate versus linear appearing microbleeds. Post-mortem imaging and histology revealed traumatic microbleed co-localization with iron-laden macrophages, predominately seen in perivascular space. Evidence of axonal injury was not observed in co-localized histopathological sections. Traumatic microbleeds were prevalent in the population studied and predictive of worse outcome. The source of traumatic microbleed signal on MRI appeared to be iron-laden macrophages in the perivascular space tracking a network of injured vessels. While axonal injury in association with traumatic microbleeds cannot be excluded, recognizing traumatic microbleeds as a form of traumatic vascular injury may aid in identifying patients who could benefit from new therapies targeting the injured vasculature and secondary injury to parenchyma.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico por imagem , Avaliação da Deficiência , Hemorragias Intracranianas/diagnóstico por imagem , Lesões do Sistema Vascular/diagnóstico por imagem , Lesões do Sistema Vascular/patologia , Adolescente , Adulto , Autopsia , Axônios/patologia , Lesões Encefálicas Traumáticas/patologia , Feminino , Escala de Resultado de Glasgow , Humanos , Hemorragias Intracranianas/patologia , Ferro/sangue , Macrófagos/patologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Tomografia Computadorizada por Raios X , Resultado do Tratamento
2.
Neuroimage ; 188: 419-426, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30576849

RESUMO

Traumatic Brain Injury (TBI) affects approximately 2.5 million people in the United States, of which 80% are considered to be mild (mTBI). Previous studies have shown that cerebral glucose uptake and metabolism are altered after brain trauma and functional metabolic deficits observed following mTBI are associated with changes in cognitive performance. Imaging of glucose uptake using [18F] Fluorodeoxyglucose (FDG) based Positron Emission Tomography (PET) with anesthesia during the uptake period demonstrated limited variability in results, but may have depressed uptake. Anesthesia has been found to interfere with blood glucose levels, and hence, FDG uptake. Conversely, forced cognitive testing during uptake may increase glucose demand in targeted regions, such as hippocampus, allowing for better differentiation of outcomes. Therefore, the objective of this study was to investigate the influence of a directed cognitive function task during the FDG uptake period on uptake measurements both in naïve rats and at 2 days after mild lateral fluid percussion (mLFP) TBI. Adult male Sprague Dawley rats underwent FDG uptake with either cognitive testing with the Novel Object Recognition (NOR) test or No Novel Object (NNO), followed by PET scans at baseline (prior to injury) and at 2days post mLFP. At baseline, FDG uptake in the right hippocampus was elevated in rats completing the NOR in comparison to the NNO (control group). Further, the NNO group rats demonstrated a greater fold change in the FDG uptake between baseline and post injury scans than the NOR group. Overall, these data suggest that cognitive activity during FDG uptake affects the regional uptake pattern in the brain, increasing uptake at baseline and suppressing the effects of injury.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Lateralidade Funcional/fisiologia , Hipocampo/fisiopatologia , Reconhecimento Psicológico/fisiologia , Animais , Comportamento Animal/fisiologia , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/metabolismo , Fluordesoxiglucose F18 , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Humanos , Masculino , Tomografia por Emissão de Pósitrons , Ratos , Ratos Sprague-Dawley
3.
Eur J Neurosci ; 45(7): 922-931, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28196306

RESUMO

Although certain drugs of abuse are known to disrupt brain glucose metabolism (BGluM), the effects of opiates on BGluM are not well characterized. Moreover, preclinical positron emission tomography (PET) studies anesthetize animals during the scan, which limits clinical applications. We investigated the effects of (i) isoflurane anesthesia and (ii) intravenous morphine self-administration (MSA) on BGluM in rats. Jugular vein cannulated adult male Sprague-Dawley rats self-administered either saline (SSA) or morphine (0.5 mg/kg/infusion, 4 h/day for 12 days). All animals were scanned twice with [18 F]-fluoro-deoxy-glucose (FDG)-PET/CT at a baseline and at 2-day withdrawal from self-administration. After the IV injection of FDG, one batch of animals (n = 14) was anesthetized with isoflurane and the other batch (n = 16) was kept awake during the FDG uptake (45 min). After FDG uptake, all animals were anesthetized in order to perform a PET/CT scan (30 min). Isoflurane anesthesia, as compared to the awake condition, reduced BGluM in the olfactory, cortex, thalamus, and basal ganglia, while increasing BGluM in the midbrain, hypothalamus, hippocampus, and cerebellum. Morphine self-administered animals exhibited withdrawal signs (piloerection and increased defecation), drug seeking, and locomotor stimulation to morphine (0.5 mg/kg) during the 2 day withdrawal. The BGluM in the striatum was increased in the MSA group as compared to the SSA group; this effect was observed only in the isoflurane anesthesia, not the awake condition. These findings suggest that the choice of the FDG uptake condition may be important in preclinical PET studies and increased BGluM in the striatum may be associated with opiate seeking in withdrawal.


Assuntos
Analgésicos Opioides/efeitos adversos , Anestésicos Inalatórios/efeitos adversos , Corpo Estriado/efeitos dos fármacos , Fluordesoxiglucose F18/farmacocinética , Isoflurano/efeitos adversos , Morfina/efeitos adversos , Compostos Radiofarmacêuticos/farmacocinética , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/farmacologia , Anestesia Intravenosa/efeitos adversos , Anestésicos Inalatórios/administração & dosagem , Anestésicos Inalatórios/farmacologia , Animais , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Isoflurano/farmacologia , Masculino , Morfina/administração & dosagem , Morfina/farmacologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Ratos , Ratos Sprague-Dawley , Síndrome de Abstinência a Substâncias/etiologia
4.
AJR Am J Roentgenol ; 203(4): W440-6, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25247974

RESUMO

OBJECTIVE: The purpose of this study is to use dynamic contrast-enhanced MRI to evaluate the perfusion characteristics of the proximal femur in the growing skeleton. MATERIALS AND METHODS: We evaluated 159 subjects (mean age, 5.67 years) who underwent a well-controlled protocol of contrast-enhanced MRI of the abdomen and hips. Perfusion and permeability parameters (enhancement ratio peak, AUC, time to peak, and rate of extraction) for six regions of the proximal femur were calculated. RESULTS: A decrease with age was found for all contrast kinetics parameters in all regions (p < 0.001). Perfusion parameters differed between the regions (p < 0.001). The highest perfusion and permeability parameters were found in the metaphyseal spongiosa, metaphyseal marrow, and periosteum. The metaphyseal spongiosa had a highly vascular pattern of enhancement and showed the highest enhancement ratio peak, AUC, and rate of extraction and the lowest time to peak. The metaphyseal marrow showed a vascular pattern of enhancement with a lower peak compared with the metaphyseal spongiosa. The periosteum showed prompt nonvascular contrast enhancement that reached a plateau that remained elevated. CONCLUSION: The highest enhancement was seen in areas involved with growth: the metaphyseal spongiosa, which is related to endochondral ossification, and the periosteal cambium, which is related to membranous ossification. The enhancement characteristics are radically different: in the spongiosa; enhancement is brisk and declines, with a vascular pattern, whereas contrast uptake increases with time in the periosteum. Recognition of normal enhancement patterns of the proximal femur is important for distinguishing normal development from pathologic processes.


Assuntos
Cabeça do Fêmur/anatomia & histologia , Cabeça do Fêmur/fisiologia , Gadolínio DTPA/farmacocinética , Interpretação de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética/métodos , Velocidade do Fluxo Sanguíneo/fisiologia , Pré-Escolar , Simulação por Computador , Meios de Contraste/farmacocinética , Feminino , Articulação do Quadril/anatomia & histologia , Articulação do Quadril/irrigação sanguínea , Articulação do Quadril/fisiologia , Humanos , Aumento da Imagem/métodos , Masculino , Modelos Biológicos , Projetos Piloto , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
AJR Am J Roentgenol ; 202(3): 626-32, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24555601

RESUMO

OBJECTIVE: T2 relaxation times on MRI are sensitive to the configuration of cartilage collagen and continually increase during aging in adults. In children, T2 relaxation times increase as a result of cartilage microstructure changes in early inflammatory arthritis. The purpose of this study was to determine age- and sex-related differences in T2 mapping of the patellar cartilage in children and adolescents during normal skeletal maturation. MATERIALS AND METHODS: Ninety-seven subjects (age range, 5-22 years; 51 females and 46 males; mean age, 14.3 and 13.7 years, respectively) without patellofemoral instability or inflammatory arthritis were included. All subjects underwent 1.5-T knee MRI with T2 mapping. The mean T2 relaxation time and thickness of the patellar cartilage were documented for each MRI examination. Skeletal maturation was determined by physeal patency (open; or closed or closing) on MRI. The associations between T2 relaxation times, cartilage thickness, sex, age, and physeal patency were assessed using Wilcoxon rank sum test and least-squares means regression models. RESULTS: T2 relaxation times and thickness of the patellar cartilage significantly decreased (p<0.0001) with increasing chronologic age. T2 relaxation times and cartilage thickness in the open physis group were found to be greater than in the closed or closing physis group (p<0.0001). T2 relaxation times and cartilage thickness were greater in males than in females (p<0.05). CONCLUSION: In contrast to senescent changes in adults, skeletal maturation in children results in a sequential decrease in T2 relaxation times that are age- and sex-dependent. Similar to cartilage in adults, cartilage in children gets progressively thinner during skeletal maturation.


Assuntos
Envelhecimento/patologia , Cartilagem Articular/patologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Patela/patologia , Adolescente , Distribuição por Idade , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Ohio/epidemiologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição por Sexo , Fatores Sexuais , Adulto Jovem
6.
Radiology ; 266(2): 618-25, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23169798

RESUMO

PURPOSE: To quantitatively evaluate interday, interreader, and intersite agreement of readers of hyperpolarized helium 3 (HPHe) MR images in patients with exercise-induced bronchoconstriction. MATERIALS AND METHODS: This HIPAA-compliant, institutional review board approved study included 13 patients with exercise-induced bronchoconstriction. On two separate days, HPHe MR imaging of the lungs was performed at baseline, immediately after a 10-minute exercise challenge (postchallenge), and 45 minutes after exercise (recovery). Patients were imaged at two sites, six at site A and seven at site B. Images were analyzed independently by multiple readers at each site. Lung volume, ventilation defect volume, ventilated volume, and the number of defects were measured quantitatively, and the location of defects was evaluated qualitatively at site A. Interday and interreader agreement were evaluated by using the intraclass correlation coefficient (ICC), and intersite agreement was evaluated by using a modified Bland-Altman analysis. RESULTS: The ICC between days for ventilation defect volume, ventilated volume, and number of defects was at least 0.74 at both sites. The ICC for lung volume was greater at site B (0.83-0.86) than at site A (0.60-0.65). Defects seen in the same location in the lung on both days included 19.7% of those seen on baseline images and 29.2% and 18.6% of defects on postchallenge and recovery images, respectively. Interreader ICC for each measurement was at least 0.82 for each site. Analysis of intersite agreement showed biases of 612 mL for lung volume, -60.7 mL for ventilation defect volume, 2.91% for ventilated volume, and -6.56 for number of defects. CONCLUSION: The reported measures of reproducibility of HPHe MR imaging may help in the design and interpretation of single- and multicenter studies of patients with exercise-induced bronchoconstriction.


Assuntos
Broncopatias/diagnóstico , Broncopatias/etiologia , Broncopatias/fisiopatologia , Exercício Físico , Imageamento por Ressonância Magnética/métodos , Administração por Inalação , Adulto , Constrição Patológica , Feminino , Hélio/administração & dosagem , Humanos , Masculino , Reprodutibilidade dos Testes
7.
J Magn Reson Imaging ; 37(6): 1359-70, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23172799

RESUMO

PURPOSE: To evaluate the reproducibility of magnetic resonance imaging (MRI)-determined hepatic fat fraction (%) across imaging sites with different magnet types and field strength. Reproducibility among MRI platforms is unclear, even though evaluating hepatic fat fractions (FFs) using MRI-based methods is accurate against MR spectroscopy. MATERIALS AND METHODS: Overweight subjects were recruited to undergo eight MRI examinations at five imaging centers with a range of magnet manufacturers and field strengths (1.5 and 3 T). FFs were estimated in liver and in fat-emulsion phantoms using three methods: 1) dual-echo images without correction (nominally out-of-phase [OP] and in-phase [IP]); 2) dual-dual-echo images (two sequences) with T2* correction (nominally OP/IP and IP/IP); and 3) six-echo images with spectral model and T2* correction, at sequential alternating OP and IP echo times (Methods 1, 2, and 3, respectively). RESULTS: Ten subjects were recruited. For Methods 1, 2, and 3, respectively, hepatic FF ranged from -2.5 to 27.0, 1.9 to 29.6, and 1.3 to 34.4%. Intraclass correlation coefficients were 0.85, 0.89, and 0.91 for each method, and within-subject coefficients of variation were 18.5, 9.9, and 10.3%, respectively. Mean phantom FFs derived by Methods 2 and 3 were comparable to the known FF for each phantom. Method 1 underestimated phantom FF. CONCLUSION: Methods 2 and 3 accurately assess FF. Strong reproducibility across magnet type and strength render them suitable for use in multicenter trials and longitudinal assessments.


Assuntos
Tecido Adiposo/patologia , Adiposidade , Fígado Gorduroso/patologia , Interpretação de Imagem Assistida por Computador/métodos , Fígado/patologia , Imageamento por Ressonância Magnética/métodos , Obesidade/patologia , Fígado Gorduroso/complicações , Feminino , Humanos , Aumento da Imagem/métodos , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica , Obesidade/complicações , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estados Unidos
8.
J Magn Reson Imaging ; 34(4): 947-55, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21751289

RESUMO

PURPOSE: To conduct a rigorous evaluation of the repeatability of liver stiffness assessed by MR elastography (MRE) in healthy and hepatitis-C-infected subjects. MATERIALS AND METHODS: A biopsy-correlated repeatability study using four-slice MRE was conducted in five healthy and four HCV-infected subjects. Subjects were scanned twice on day 1 and after 7-14 days. Each slice was acquired during a 14-s breath-hold with a commercially available acquisition technique (MR-Touch, GE Healthcare). Results were analyzed by two independent analysts. RESULTS: The intraclass correlation coefficient (ICC) was 0.85 (90% confidence interval [CI]: 0.71 to 0.98) for the between-scan average of maximum stiffness within each slice and 0.88 (90% CI: 0.78 to 0.99) for the average of mean stiffness within each slice for the primary analyst. For both analysts, the average of the mean liver stiffness within each slice was highly reproducible with ICC of 0.93 and 0.94. Within-subject coefficients of variation ranged from 6.07% to 10.78% for HCV+ and healthy subjects. CONCLUSION: MRE is a highly reproducible modality for assessing liver stiffness in HCV patients and healthy subjects and can discriminate between moderate fibrosis and healthy liver. MRE is a promising modality for noninvasive assessment of liver fibrosis (CLINICALTRIALS.GOV IDENTIFIER: NCT00896233).


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Hepatite C Crônica/diagnóstico , Processamento de Imagem Assistida por Computador , Cirrose Hepática/diagnóstico , Imageamento por Ressonância Magnética/métodos , Adulto , Biópsia por Agulha , Estudos de Casos e Controles , Feminino , Hepatite C Crônica/complicações , Humanos , Imuno-Histoquímica , Cirrose Hepática/etiologia , Testes de Função Hepática , Masculino , Pessoa de Meia-Idade , Valores de Referência , Reprodutibilidade dos Testes , Índice de Gravidade de Doença , Adulto Jovem
9.
Front Neurosci ; 15: 779533, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35280340

RESUMO

Pre-clinical models of traumatic brain injury (TBI) have been the primary experimental tool for understanding the potential mechanisms and cellular alterations that follow brain injury, but the human relevance and translational value of these models are often called into question. Efforts to better recapitulate injury biomechanics and the use of non-rodent species with neuroanatomical similarities to humans may address these concerns and promise to advance experimental studies toward clinical impact. In addition to improving translational aspects of animal models, it is also advantageous to establish pre-clinical outcomes that can be directly compared with the same outcomes in humans. Non-invasive imaging and particularly MRI is promising for this purpose given that MRI is a primary tool for clinical diagnosis and at the same time increasingly available at the pre-clinical level. The objective of this study was to identify which commonly used radiologic markers of TBI outcomes can be found also in a translationally relevant pre-clinical model of TBI. The ferret was selected as a human relevant species for this study with folded cortical geometry and relatively high white matter content and the closed head injury model of engineered rotation and acceleration (CHIMERA) TBI model was selected for biomechanical similarities to human injury. A comprehensive battery of MRI protocols based on common data elements (CDEs) for human TBI was collected longitudinally for the identification of MRI markers and voxelwise analysis of T2, contrast enhancement and diffusion tensor MRI values. The most prominent MRI findings were consistent with focal hemorrhage and edema in the brain stem region following high severity injury as well as vascular and meningeal injury evident by contrast enhancement. While conventional MRI outcomes were not highly conspicuous in less severe cases, quantitative voxelwise analysis indicated diffusivity and anisotropy alterations in the acute and chronic periods after TBI. The main conclusions of this study support the translational relevance of closed head TBI models in intermediate species and identify brain stem and meningeal vulnerability. Additionally, the MRI findings highlight a subset of CDEs with promise to bridge pre-clinical studies with human TBI outcomes.

10.
Acta Neuropathol Commun ; 9(1): 89, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001261

RESUMO

Traumatic brain injury (TBI) causes chronic symptoms and increased risk of neurodegeneration. Axons in white matter tracts, such as the corpus callosum (CC), are critical components of neural circuits and particularly vulnerable to TBI. Treatments are needed to protect axons from traumatic injury and mitigate post-traumatic neurodegeneration. SARM1 protein is a central driver of axon degeneration through a conserved molecular pathway. Sarm1-/- mice with knockout (KO) of the Sarm1 gene enable genetic proof-of-concept testing of the SARM1 pathway as a therapeutic target. We evaluated Sarm1 deletion effects after TBI using a concussive model that causes traumatic axonal injury and progresses to CC atrophy at 10 weeks, indicating post-traumatic neurodegeneration. Sarm1 wild-type (WT) mice developed significant CC atrophy that was reduced in Sarm1 KO mice. Ultrastructural classification of pathology of individual axons, using electron microscopy, demonstrated that Sarm1 KO preserved more intact axons and reduced damaged or demyelinated axons. Longitudinal MRI studies in live mice identified significantly reduced CC volume after TBI in Sarm1 WT mice that was attenuated in Sarm1 KO mice. MR diffusion tensor imaging detected reduced fractional anisotropy in both genotypes while axial diffusivity remained higher in Sarm1 KO mice. Immunohistochemistry revealed significant attenuation of CC atrophy, myelin loss, and neuroinflammation in Sarm1 KO mice after TBI. Functionally, Sarm1 KO mice exhibited beneficial effects in motor learning and sleep behavior. Based on these findings, Sarm1 inactivation can protect axons and white matter tracts to improve translational outcomes associated with CC atrophy and post-traumatic neurodegeneration.


Assuntos
Proteínas do Domínio Armadillo/deficiência , Axônios/metabolismo , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/metabolismo , Proteínas do Citoesqueleto/deficiência , Imagem de Tensor de Difusão/métodos , Inativação Gênica/fisiologia , Animais , Proteínas do Domínio Armadillo/genética , Axônios/patologia , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/patologia , Proteínas do Citoesqueleto/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Neural/diagnóstico por imagem , Degeneração Neural/genética , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Resultado do Tratamento
11.
Radiology ; 255(3): 899-908, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20501727

RESUMO

PURPOSE: To analyze T2 maps of pelvic and thigh muscles in Duchenne muscular dystrophy (DMD), to identify the most severely affected muscle, and to correlate the T2 of muscle with the grade of fatty infiltration at nonquantitative magnetic resonance (MR) imaging and results of clinical assessment. MATERIALS AND METHODS: This prospective study was HIPAA compliant and was approved by the institutional review board; written consent was obtained from all participants' parents or guardians. Thirty-four boys with DMD (mean age, 8.4 years) were evaluated clinically (age, clinical function score, timed Gower score, time to run 30 feet, and serum creatine kinase [CK] level) and with nonquantitative MR imaging and axial T2 mapping from the iliac crest to the mid thigh. The T2 maps and mean T2 of 18 muscles in the pelvis and thighs were analyzed to identify the most severely involved muscle. The amount of fatty infiltration was assigned a grade of zero to four for all pelvic and thigh muscles by using T1-weighted nonquantitative MR images. The Spearman correlation coefficients model was used to correlate the mean T2, nonquantitative MR imaging score and clinical assessments. RESULTS: The gluteus maximus muscle had the highest T2. The mean T2 for this muscle showed a significant correlation with the nonquantitative MR imaging score for fatty infiltration (P < .001) and with all clinical assessments except CK level. CONCLUSION: Gluteus maximus muscles are most severely affected in patients with DMD. The T2 of the gluteus maximus muscle can be used as a quantitative and objective measure of disease severity.


Assuntos
Imageamento por Ressonância Magnética/métodos , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Tecido Adiposo/patologia , Adolescente , Análise de Variância , Biópsia , Nádegas , Criança , Pré-Escolar , Feminino , Humanos , Modelos Logísticos , Masculino , Pelve , Estudos Prospectivos , Coxa da Perna
12.
AJR Am J Roentgenol ; 195(4): 1021-5, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20858834

RESUMO

OBJECTIVE: Increased cartilage T2 relaxation time is thought to be an early marker of disease progression in juvenile idiopathic arthritis, because it can identify microstructural changes before damage becomes visible. The purpose of this study was to investigate longitudinal changes in T2 relaxation time mapping (i.e., T2 map) in children with early juvenile idiopathic arthritis and to compare with changes in clinical assessments. SUBJECTS AND METHODS: Twenty children (age range, 6.4-16 years) with early juvenile idiopathic arthritis completed at least four evaluations with T2 maps and clinical assessments: at enrollment, at 3 months, and at 1, 2, and 3 years. Sagittal T2 maps of distal femoral cartilage were generated, a region of interest was selected, and a T2 relaxation time profile was generated. The area under the curve from the T2 profile (i.e., T2 value) was correlated with patient age and sex and the following clinical assessments: total knee score, Childhood Health Assessment Questionnaire, physician global assessment, parent global assessment, and total number of active joints. RESULTS: There was a significant increase in mean T2 values from 3 months to 2 years (p < 0.05). There was a significant decrease in mean Childhood Health Assessment Questionnaire values between enrollment and 2 years (p < 0.05) and a significant decrease in parent global assessment, physician global assessment, total number of active joints, and total knee score values between enrollment and 1 year (p < 0.05). There were no statistically significant correlations between T2 values and patient age, sex, or clinical assessments. CONCLUSION: In patients with early juvenile idiopathic arthritis, T2 maps showed increased T2 values from the 3-month to 2-year follow-up, during which time the clinical assessments improved. This increase likely represents progressive microstructural changes, even though clinical symptoms improved with treatment.


Assuntos
Artrite Juvenil/patologia , Cartilagem Articular/patologia , Imageamento por Ressonância Magnética , Adolescente , Criança , Feminino , Fêmur , Humanos , Estudos Longitudinais , Masculino , Fatores de Tempo
13.
Acta Neuropathol Commun ; 8(1): 84, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32517808

RESUMO

Multiple Sclerosis (MS) causes neurologic disability due to inflammation, demyelination, and neurodegeneration. Immunosuppressive treatments can modify the disease course but do not effectively promote remyelination or prevent long term neurodegeneration. As a novel approach to mitigate chronic stage pathology, we tested transplantation of mouse induced neural stem cells (iNSCs) into the chronically demyelinated corpus callosum (CC) in adult mice. Male C57BL/6 mice fed 0.3% cuprizone for 12 weeks exhibited CC atrophy with chronic demyelination, astrogliosis, and microglial activation. Syngeneic iNSCs were transplanted into the CC after ending cuprizone and perfused for neuropathology 2 weeks later. Magnetic resonance imaging (MRI) sequences for magnetization transfer ratio (MTR), diffusion-weighted imaging (T2), and diffusion tensor imaging (DTI) quantified CC pathology in live mice before and after iNSC transplantation. Each MRI technique detected progressive CC pathology. Mice that received iNSCs had normalized DTI radial diffusivity, and reduced astrogliosis post-imaging. A motor skill task that engages the CC is Miss-step wheel running, which demonstrated functional deficits from cuprizone demyelination. Transplantation of iNSCs resulted in marked recovery of running velocity. Neuropathology after wheel running showed that iNSC grafts significantly increased host oligodendrocytes and proliferating oligodendrocyte progenitors, while modulating axon damage. Transplanted iNSCs differentiated along astrocyte and oligodendrocyte lineages, without myelinating, and many remained neural stem cells. Our findings demonstrate the applicability of neuroimaging and functional assessments for pre-clinical interventional trials during chronic demyelination and detect improved function from iNSC transplantation. Directly reprogramming fibroblasts into iNSCs facilitates the future translation towards exogenous autologous cell therapies.


Assuntos
Corpo Caloso/patologia , Corpo Caloso/fisiologia , Células-Tronco Pluripotentes Induzidas/transplante , Atividade Motora , Esclerose Múltipla/patologia , Esclerose Múltipla/fisiopatologia , Células-Tronco Neurais/transplante , Remielinização , Animais , Astrócitos/patologia , Astrócitos/fisiologia , Diferenciação Celular , Corpo Caloso/diagnóstico por imagem , Modelos Animais de Doenças , Células-Tronco Pluripotentes Induzidas/fisiologia , Imageamento por Ressonância Magnética , Masculino , Camundongos Endogâmicos C57BL , Esclerose Múltipla/prevenção & controle , Células-Tronco Neurais/fisiologia , Oligodendroglia/patologia , Oligodendroglia/fisiologia
14.
AJR Am J Roentgenol ; 192(4): 1037-44, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19304711

RESUMO

OBJECTIVE: The purpose of our study was to develop a new method for quantifying the severity of cystic lung disease using chest CT and to evaluate this method in patients with lymphangioleiomyomatosis (LAM). SUBJECTS AND METHODS: Eighteen patients with LAM (all women; mean age, 43.6 years) underwent chest CT and pulmonary function testing including diffusing capacity for carbon monoxide (DLCO). All patients were at their clinical baseline on the day of imaging. Standard quantitative CT metrics including the percentage of the lung volume < -910 HU and the 15th percentile of Hounsfield units were computed from the histogram of lung voxels. A new histogram analysis method was developed to compute the cyst volume and the volume of the remaining lung by segmenting the entire lung attenuation histogram into two underlying distributions, one from the cysts and the other from the remaining lung tissue. RESULTS: The mean +/- SD for quantitative lung metrics was 21% +/- 16% for percentage < -910 HU, -915 +/- 47 HU for 15th percentile of Hounsfield units, and 19% +/- 13% for cyst volume. The correlation between pulmonary function tests and CT metrics was strongest for the percentage of cyst volume for all pulmonary function testing indexes, with correlations between forced expiratory volume in 1 second (FEV(1)) percentage predicted and the CT metrics of r = -0.52, r = 0.50, and r = -0.86 for the percentage of lung < -910 HU, the 15th percentile of Hounsfield units, and the percentage of cyst volume, respectively. CONCLUSION: A new method for quantifying cyst volume as a percentage of total lung volume using chest CT correlates with pulmonary function parameters in patients with LAM and may have utility in the assessment of disease severity and progression of cystic lung diseases.


Assuntos
Algoritmos , Tomografia Computadorizada de Feixe Cônico/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Linfangioleiomiomatose/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Neoplasias Pulmonares/fisiopatologia , Linfangioleiomiomatose/fisiopatologia , Pessoa de Meia-Idade , Radiografia Torácica , Testes de Função Respiratória , Índice de Gravidade de Doença
15.
J Neurotrauma ; 36(22): 3115-3131, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31037999

RESUMO

Angiotensin II (Ang II)-mediated activation of its type I receptor (AT1R) in the central nervous system promotes glial proliferation, local inflammation, and a decrease of cerebral blood flow. Angiotensin-(1-7) (Ang-(1-7))-an Ang II derivative peptide-signals through the Mas receptor (MasR) in opposition to Ang II/AT1R, promoting anti-inflammatory, vasodilatory, and neuroprotective effects. As our laboratory has previously demonstrated beneficial effects of AT1R inhibition following controlled cortical impact (CCI) in mice, we asked whether activation of Ang-(1-7)/MasR signaling would also be beneficial in this model. Adult male C57BL/6 mice were injured by CCI. Ang-(1-7) or vehicle was administered subcutaneously (S.Q.) at 1 mg/kg/day at 1 or 6 h post-injury, until animals were sacrificed at 3 or 29 days post-injury (dpi). Ang-(1-7) attenuated motor deficits at 3 dpi and improved performance in the Morris Water Maze at 28 dpi. Brain histology or magnetic resonance imaging (MRI) indicated that Ang-(1-7)-treated mice had smaller lesion volumes at 3, 10, 24, and 29 dpi. Pre-treatment with A779, a MasR antagonist, prevented Ang-(1-7) from reducing lesion volume at 3 dpi, suggesting that the benefits of Ang-(1-7) were MasR-dependent. Immunohistochemistry revealed that Ang-(1-7) reduced microgliosis at 3 and 29 dpi, and astrogliosis at 29 dpi. Ang-(1-7) decreased neuronal and capillary loss at 29 dpi. In summary, S.Q. administration of Ang-(1-7) after injury had anti-inflammatory, neuroprotective, and cerebrovascular-protective actions leading to improved functional and pathological recovery in a mouse model of traumatic brain injury (TBI). These data show for the first time that Ang-(1-7) has potential therapeutic use for TBI.


Assuntos
Angiotensina I/farmacologia , Lesões Encefálicas Traumáticas/patologia , Encéfalo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Animais , Encéfalo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
16.
Neurosci Lett ; 690: 23-28, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30296507

RESUMO

Aging results in increased activation of inflammatory glial cells and decreased neuronal viability following spinal cord injury (SCI). Metabolism and transport of glucose is also decreased with age, although the influence of age on glucose transporter (GLUT) expression or glucose uptake in SCI is currently unknown. We therefore performed [18F]Fluorodeoxyglucose (FDG) PET imaging of young (3 month) and middle-aged (12 month) rats. Glucose uptake in middle-aged rats was decreased compared to young rats at baseline, followed by increased uptake 14 days post contusion SCI. qRT-PCR and protein analysis revealed an association between 14 day glucose uptake and 14 day post-injury inflammation. Further, gene expression analysis of neuron-specific GLUT3 and non-specific GLUT4 (present on glial cells) revealed an inverse relationship between GLUT3/4 gene expression and glucose uptake patterns. Protein expression revealed increased GLUT3 in 3 month rats only, consistent with age related decreases in glucose uptake, and increased GLUT4 in 12 month rats only, consistent with age related increases in inflammatory activity and glucose uptake. Inconsistencies between gene and protein suggest an influence of age-related impairment of translation and/or protein degradation. Overall, our findings show that age alters glucose uptake and GLUT3/4 expression profiles before and after SCI, which may be dependent on level of inflammatory response, and may suggest a therapeutic avenue in addressing glucose uptake in the aging population.


Assuntos
Envelhecimento/metabolismo , Transportador de Glucose Tipo 3/biossíntese , Transportador de Glucose Tipo 4/biossíntese , Glucose/metabolismo , Traumatismos da Medula Espinal/metabolismo , Medula Espinal/metabolismo , Animais , Fluordesoxiglucose F18/metabolismo , Neuroimagem Funcional , Inflamação/metabolismo , Masculino , Tomografia por Emissão de Pósitrons , Ratos
17.
Sci Rep ; 9(1): 16406, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712561

RESUMO

Long-term operations carried out at high altitude (HA) by military personnel, pilots, and astronauts may trigger health complications. In particular, chronic exposure to high altitude (CEHA) has been associated with deficits in cognitive function. In this study, we found that mice exposed to chronic HA (5000 m for 12 weeks) exhibited deficits in learning and memory associated with hippocampal function and were linked with changes in the expression of synaptic proteins across various regions of the brain. Specifically, we found decreased levels of synaptophysin (SYP) (p < 0.05) and spinophilin (SPH) (p < 0.05) in the olfactory cortex, post synaptic density-95 (PSD-95) (p < 0.05), growth associated protein 43 (GAP43) (p < 0.05), glial fibrillary acidic protein (GFAP) (p < 0.05) in the cerebellum, and SYP (p < 0.05) and PSD-95 (p < 0.05) in the brainstem. Ultrastructural analyses of synaptic density and morphology in the hippocampus did not reveal any differences in CEHA mice compared to SL mice. Our data are novel and suggest that CEHA exposure leads to cognitive impairment in conjunction with neuroanatomically-based molecular changes in synaptic protein levels and astroglial cell marker in a region specific manner. We hypothesize that these new findings are part of highly complex molecular and neuroplasticity mechanisms underlying neuroadaptation response that occurs in brains when chronically exposed to HA.


Assuntos
Altitude , Astrócitos/fisiologia , Pareamento Cromossômico , Exposição Ambiental , Memória , Animais , Encéfalo/fisiologia , Exposição Ambiental/efeitos adversos , Hipocampo/fisiologia , Camundongos , Plasticidade Neuronal
18.
Brain Res ; 1723: 146400, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31445032

RESUMO

Changes in 18F-fluorodeoxyglucose ([18F]FDG) measured by positron emission tomography (PET) can be used for the noninvasive detection of metabolic dysfunction following mild traumatic brain injury (mTBI). This study examined the time course of metabolic changes induced by primary blast injury by measuring regional [18F]FDG uptake. Adult, male rats were exposed to blast overpressure (15 psi) or sham injury, and [18F]FDG uptake was measured before injury and again at 1-3 h and 7 days post-injury, using both volume-of-interest (VOI) and voxel-based analysis. VOI analysis revealed significantly increased [18F]FDG uptake in corpus callosum and amygdala at both 1-3 h and 7 days following blast, while a transient decrease in uptake was observed in the midbrain at 1-3 h only. Voxel-based analysis revealed similar significant differences in uptake between sham and blast-injured rats at both time points. At 1-3 h post-injury, clusters of increased uptake were found in the amygdala, somatosensory cortex, and corpus callosum, while regions of decreased uptake were observed in midbrain structures (inferior colliculus, ventrolateral tegmental area) and dorsal auditory cortex. At day 7, a region of increased uptake in blast-injured rats was found in a cluster centered on the cortex-amygdala transition zone, while no regions of decreased uptake were observed. These results suggest that a relatively mild primary blast injury results in altered brain metabolism in multiple brain regions and that post-injury time of assessment is an important factor in observing regional changes in [18F]FDG uptake.


Assuntos
Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/fisiopatologia , Fluordesoxiglucose F18/metabolismo , Tonsila do Cerebelo/metabolismo , Animais , Traumatismos por Explosões/fisiopatologia , Encéfalo/metabolismo , Lesões Encefálicas/metabolismo , Corpo Caloso/metabolismo , Masculino , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Ratos , Ratos Sprague-Dawley
19.
Exp Neurol ; 311: 293-304, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30321497

RESUMO

We sought to understand the mechanisms underlying cognitive deficits that are reported to affect non-native subjects following their prolonged stay and/or work at high altitude (HA). We found that mice exposed to a simulated environment of 5000 m exhibit deficits in hippocampal learning and memory accompanied by abnormalities in brain MR imaging. Exposure (1-8 months) to HA led to an increase in brain ventricular volume, a reduction in relative cerebral blood flow and changes in diffusion tensor imaging (DTI) derived parameters within the hippocampus and corpus callosum. Furthermore, neuropathological examination revealed significant expansion of the neurovascular network, microglia activation and demyelination within the corpus callosum. Electrophysiological recordings from the corpus callosum indicated that axonal excitabilities are increased while refractory periods are longer despite a lack of change in action potential conduction velocities of both myelinated and unmyelinated fibers. Next generation RNA-sequencing identified alterations in hippocampal and amygdala transcriptome signaling pathways linked to angiogenesis, neuroinflammation and myelination. Our findings reveal that exposure to hypobaric-hypoxia triggers maladaptive responses inducing cognitive deficits and suggest potential mechanisms underlying the adverse impacts of staying or traveling at high altitude.


Assuntos
Adaptação Fisiológica/fisiologia , Altitude , Pressão Atmosférica , Circulação Cerebrovascular/fisiologia , Transtornos da Memória/metabolismo , Neurônios/metabolismo , Animais , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Transtornos da Memória/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neocórtex/metabolismo , Neocórtex/patologia , Neurônios/patologia , Distribuição Aleatória
20.
Hum Brain Mapp ; 29(6): 696-710, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17598163

RESUMO

Previous studies have found developmental differences between males and females in brain structure. During childhood and adolescence, relative white matter volume increases faster in boys than in girls. Sex differences in the development of white matter microstructure were investigated in a cohort of normal children ages 5-18 in a cross-sectional diffusion tensor imaging (DTI) study. Greater fractional anisotropy (FA) in boys was shown in associative white matter regions (including the frontal lobes), while greater FA in girls was shown in the splenium of the corpus callosum. Greater mean diffusivity (MD) in boys was shown in the corticospinal tract and in frontal white matter in the right hemisphere; greater MD in girls was shown in occipito-parietal regions and the most superior aspect of the corticospinal tract in the right hemisphere. Significant sex-age interactions on FA and MD were also shown. Girls displayed a greater rate of fiber density increase with age when compared with boys in associative regions (reflected in MD values). However, girls displayed a trend toward increased organization with age (reflected in FA values) only in the right hemisphere, while boys displayed this trend only in the left hemisphere. These results indicate differing developmental trajectories in white matter for boys and girls and the importance of taking sex into account in developmental DTI studies. The results also may have implications for the study of the relationship of brain architecture with intelligence.


Assuntos
Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Imagem de Difusão por Ressonância Magnética , Fibras Nervosas Mielinizadas , Caracteres Sexuais , Adolescente , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/crescimento & desenvolvimento , Criança , Pré-Escolar , Estudos de Coortes , Corpo Caloso/citologia , Corpo Caloso/crescimento & desenvolvimento , Feminino , Lobo Frontal/citologia , Lobo Frontal/crescimento & desenvolvimento , Humanos , Cápsula Interna/citologia , Cápsula Interna/crescimento & desenvolvimento , Masculino , Lobo Occipital/citologia , Lobo Occipital/crescimento & desenvolvimento , Lobo Parietal/citologia , Lobo Parietal/crescimento & desenvolvimento , Tratos Piramidais/citologia , Tratos Piramidais/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa