Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Phys Chem Chem Phys ; 26(3): 2111-2126, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38131449

RESUMO

The deleterious impact of Helicobacter pylori (H. pylori) on human health is contingent upon its ability to create and sustain colony structure, which in turn is dictated by the effective performance of flagella - a multi-protein rotary nanodevice. Hence, to design an effective therapeutic strategy against H. pylori, we here conducted a systematic search for an effective druggable site by focusing on the structure-dynamics-energetics-stability landscape of the junction points of three 1 : 1 protein complexes (FliFC-FliGN, FliGM-FliMM, and FliYC-FliNC) that contribute mainly to the rotary motion of the flagella via the transformation of information along the junctions over a wide range of pH values operative in the stomach (from neutral to acidic). We applied a gamut of physiologically relevant perturbations in the form of thermal scanning and mechanical force to sample the entire quasi - and non-equilibrium conformational spaces available for the protein complexes under neutral and acidic pH conditions. Our perturbation-induced magnification of conformational distortion approach identified pH-independent protein sequence-specific evolution of precise thermally labile segments, which dictate the specific thermal unfolding mechanism of each complex and this complex-specific pH-independent structural disruption notion remains consistent under mechanical stress as well. Complementing the above observations with the relative rank-ordering of estimated equilibrium binding free energies between two protein sequences of a specific complex quantifies the extent of structure-stability modulation due to pH alteration, rationalizes the exceptional stability of H. pylori under acidic pH conditions, and identifies the pH-independent complex-sequence-segment-residue diagram for targeted drug design.


Assuntos
Helicobacter pylori , Humanos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Helicobacter pylori/química , Helicobacter pylori/efeitos dos fármacos
2.
Biochemistry ; 62(12): 1890-1905, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37246507

RESUMO

The mechanism of protein aggregation can be broadly viewed as a shift from the native-state stabilizing intramolecular to the aggregated-phase sustaining intermolecular interactions. Understanding the role of electrostatic forces on the extent of modulation of this switch has recently evolved as a topic of monumental significance as protein aggregation has lately been connected to charge modifications of an aging proteome. To decipher the distinctive role of electrostatic forces on the extremely complicated phase separation landscape, we opted for a combined in vitro-in silico approach to ascertain the structure-dynamics-stability-aggregability relationship of the functional tandem RRM domains of the ALS-related protein TDP-43 (TDP-43tRRM), under a bivariate solution condition in terms of pH and salt concentration. Under acidic pH conditions, the native TDP-43tRRM protein creates an aggregation-prone entropically favorable partially unfolded conformational landscape due to enthalpic destabilization caused by the protonation of the buried ionizable residues and consequent overwhelming fluctuations of selective segments of the sequence leading to anti-correlated movements of the two domains of the protein. The evolved fluffy ensemble with a comparatively exposed backbone then easily interacts with incoming protein molecules in the presence of salt via typical amyloid-aggregate-like intermolecular backbone hydrogen bonds with a considerable contribution originating from the dispersion forces. Subsequent exposure to excess salt at low pH conditions expedites the aggregation process via an electrostatic screening mechanism where salt shows preferential binding to the positively charged side chain. The applied target observable-specific approach complementarity unveils the hidden information landscape of an otherwise complex process with unquestionable conviction.


Assuntos
Amiloide , Agregados Proteicos , Eletricidade Estática , Amiloide/química , Proteínas Amiloidogênicas , Proteínas de Ligação a DNA/química , Dobramento de Proteína
3.
Biochemistry ; 62(2): 451-461, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36573496

RESUMO

The acid-base behavior of amino acids plays critical roles in several biochemical processes. Depending on the interactions with the protein environment, the pKa values of these amino acids shift from their respective solution values. As the side chains interact with the polypeptide backbone, a pH-induced change in the protonation state of aspartic and glutamic acids might significantly influence the structure and stability of a protein. In this work, we have combined two-dimensional infrared spectroscopy and molecular dynamics simulations to elucidate the pH-induced structural changes in an antimicrobial enzyme, lysozyme, over a wide range of pH. Simultaneous measurements of the carbonyl signals arising from the backbone and the acidic side chains provide detailed information about the pH dependence of the local and global structural features. An excellent agreement between the experimental and the computational results allowed us to obtain a residue-specific molecular understanding. Although lysozyme retains the helical structure for the entire pH range, one distinct loop region (residues 65-75) undergoes local structural deformation at low pH. Interestingly, combining our experiments and simulations, we have identified the aspartic acid residues in lysozyme, which are influenced the most/least by pH modulation.


Assuntos
Muramidase , Proteínas , Concentração de Íons de Hidrogênio , Proteínas/química , Aminoácidos , Ácido Aspártico/química
4.
Proteins ; 91(3): 380-394, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36208132

RESUMO

The present state of understanding the mechanism of Spinocerebellar Ataxia-1, a fatal neurodegenerative disease linked to the protein Ataxin-1 (ATXN1), is baffled by a set of self-contradictory, and hence, inconclusive observations. This fallacy poses a bottleneck to the effective designing of curable drugs as the field is currently missing the specific druggable site. To understand the fundamentals of pathogenesis, we tried to decipher the intricacies of the extremely complicated landscape by targeting the relevant species that supposedly dictate the structure-function paradigm. The atomic-level description and characterization of the dynamism of the systems reveal the existence of structural polymorphism in all the leading stakeholders of the overall system. The very existence of conformational heterogeneity in every species creates numerous possible combinations of favorable interactions because of the variability in segmental cross-talks and hence claims its role in the choice of routes between functional activity and dysfunctional disease-causing aggregation. Despite this emergent configurational diversity, there is a common mode of operative intermolecular forces that dictates the extent of stability of all the multimeric complexes due to the localized population of a specific type of residue. The present research proposes a dynamic switch mechanism between aggregability and functional activity, based on the logical interpretation of the estimated variables, which is practically dictated by the effective concentration of the interacting species involved in the cell.


Assuntos
Doenças Neurodegenerativas , Proteínas Nucleares , Humanos , Ataxina-1/genética , Ataxina-1/química , Ataxina-1/metabolismo , Ataxinas , Proteínas Nucleares/química , Proteínas do Tecido Nervoso/química
5.
J Fluoresc ; 33(6): 2229-2239, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37004622

RESUMO

Inhomogeneity in single molecule electron transfer at the surface of lipid in a single vesicle has been explored by single molecule spectroscopic technique. In our study we took Di-methyl aniline (DMA), as the electron donor (D) and three different organic dyes as acceptor. These dyes are C153, C480 and C152 and they reside in different regions in the vesicle depending upon their preference of residence. For each probe, we found fluctuations in the single-molecule fluorescence decay, which are attributed to the variation in the reactivity of interfacial electron transfer. We found a non-exponential auto-correlation fluctuation of the intensity of the probe, which is ascribed to the kinetic disorder in the rate of electron transfer. We have also shown the power law distribution of the dark state (off time), which obeys the levy's statistics. We found a shift in lifetime distribution for the probe (C153) from 3.9 ns to 3.5 ns. This observed quenching is due to the dynamic electron transfer. We observed the kinetic disorderness in the electron transfer reaction for each dye. This source of fluctuation in electron transfer rate may be ascribed to the inherent fluctuation, occurring on the time scale of ~ 1.1 ms (for C153) of the vesicle, containing lipids.

6.
J Chem Phys ; 159(6)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37551804

RESUMO

Whether single-molecule trajectories, observed experimentally or in molecular simulations, can be described using simple models such as biased diffusion is a subject of considerable debate. Memory effects and anomalous diffusion have been reported in a number of studies, but directly inferring such effects from trajectories, especially given limited temporal and/or spatial resolution, has been a challenge. Recently, we proposed that this can be achieved with information-theoretical analysis of trajectories, which is based on the general observation that non-Markov effects make trajectories more predictable and, thus, more "compressible" by lossless compression algorithms. Toy models where discrete molecular states evolve in time were shown to be amenable to such analysis, but its application to continuous trajectories presents a challenge: the trajectories need to be digitized first, and digitization itself introduces non-Markov effects that depend on the specifics of how trajectories are sampled. Here we develop a milestoning-based method for information-theoretical analysis of continuous trajectories and show its utility in application to Markov and non-Markov models and to trajectories obtained from molecular simulations.

7.
J Environ Manage ; 294: 113036, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34146933

RESUMO

Water hyacinth (WH) is considered as the worst aquatic weed in the world because of its rapid growth and fast spread into new areas of fresh water bodies. We investigated the potentiality of using WH as a raw material for production of handmade paper and compost in Bangladesh. Potash pulping was done using potassium hydroxide (KOH) at different alkali concentrations (8-12%) with a liquor to solid ratio of 7:1 at 145 °C for 2 h. The pulp was bleached using hydrogen peroxide (H2O2), and pulp properties (brightness, tear index and tensile index) of bleached and unbleached pulps were analyzed following the respective TAPPI standards. The produced black liquor was mixed with WH along with kitchen bio-wastes to produce compost. The properties of the compost were tested following the published protocols, i.e., wet digestion, Kjeldahl, vanadomolybdophosphoric acid, and Flame Spectrophotometry methods. Brightness, tensile index and tear index of bleached hand sheets were found to be 37.2%, 49.2 N m/g and 6.79 m.Nm2/g, respectively suggesting significant contribution of bleaching on WH paper quality. Addition of black liquor significantly increased the nitrogen and potassium content of bio-waste compost. Thus, WH can be used as a raw material for making handmade paper while the process by-product can be supplemented to improve the nutritional quality of compost. Such cottage-industry fabrication of WH green products could be developed to control the infestation of WH in water bodies, and this technology may provide for new possible sustainable livelihood option.


Assuntos
Compostagem , Eichhornia , Bangladesh , Peróxido de Hidrogênio , Nitrogênio
8.
J Am Chem Soc ; 139(41): 14518-14525, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28810743

RESUMO

In a dye sensitized photoelectrosynthesis cell (DSPEC), the relative orientation of the catalyst and chromophore plays an important role in determining the device efficiency. Here we introduce a new, robust atomic layer deposition (ALD) procedure for the preparation of molecular chromophore-catalyst assemblies on wide bandgap semiconductors. In this procedure, solution deposited, phosphonate derivatized metal complexes on metal oxide surfaces are treated with reactive metal reagents in the gas phase by ALD to form an outer metal ion bridging group, which can bind a second phosphonate containing species from solution to establish a R1-PO2-O-M-O-PO2-R2 type surface assembly. With the ALD procedure, assemblies bridged by Al(III), Sn(IV), Ti(IV), or Zr(IV) metal oxide units have been prepared. To evaluate the performance of this new type of surface assembly, intra-assembly electron transfer was investigated by transient absorption spectroscopy, and light-driven water splitting experiments under steady-state illumination were conducted. A SnO2 bridged assembly on SnO2/TiO2 core/shell electrodes undergoes light-driven water oxidation with an incident photon to current efficiency (IPCE) of 17.1% at 440 nm. Light-driven water reduction with a ruthenium trisbipyridine chromophore and molecular Ni(II) catalyst on NiO films was also used to produce H2. Compared to conventional solution-based procedures, the ALD approach offers significant advantages in scope and flexibility for the preparation of stable surface structures.

9.
Chemistry ; 23(32): 7626-7641, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28178367

RESUMO

Electrocatalysts are critically important for a secure energy future, as they facilitate the conversion between electrical and chemical energy. Molecular catalysts offer precise control of structure that enables understanding of structure-reactivity relationships, which can be difficult to achieve with heterogeneous catalysts. Molecular electrocatalysts can be immobilized on surfaces by covalent bonds or through non-covalent interactions. Advantages of surface immobilization include the need for less catalyst, avoidance of bimolecular decomposition pathways, and easier determination of catalyst lifetime. This Minireview highlights surface immobilization of molecular electrocatalysts for reduction of O2 , oxidation of H2 O, production of H2 , and reduction of CO2 .

10.
J Chem Phys ; 147(15): 152707, 2017 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-29055292

RESUMO

Recent single-molecule experiments probed transition paths of biomolecular folding and, in particular, measured the time biomolecules spend while crossing their free energy barriers. A surprising finding from these studies is that the transition barriers crossed by transition paths, as inferred from experimentally observed transition path times, are often lower than the independently determined free energy barriers. Here we explore memory effects leading to anomalous diffusion as a possible origin of this discrepancy. Our analysis of several molecular dynamics trajectories shows that the dynamics of common reaction coordinates used to describe protein folding is subdiffusive, at least at sufficiently short times. We capture this effect using a one-dimensional fractional Brownian motion (FBM) model, in which the system undergoes a subdiffusive process in the presence of a potential of mean force, and show that this model yields much broader distributions of transition path times with stretched exponential long-time tails. Without any adjustable parameters, these distributions agree well with the transition path times computed directly from protein trajectories. We further discuss how the FBM model can be tested experimentally.


Assuntos
Modelos Químicos , Dobramento de Proteína , Proteínas/química , Difusão , Cinética , Simulação de Dinâmica Molecular
11.
Eur Biophys J ; 45(2): 113-28, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26463823

RESUMO

Gram-negative bacteria like Yersinia, Pseudomonas, and Aeromonas need type III secretion system (T3SS) for their pathogenicity. V-antigen and its regulator are essential for functioning of T3SS. There is significant functional conservation amongst V-antigen and its regulator belonging to the Ysc family. In this study, we have structurally characterized the inter-genus complexes of V-antigen and its regulator. ConSurf analysis demonstrates that V-antigens belonging to the Ysc family show high structural identity predominantly confined to the two long helical regions. The regulator of V-antigen shows high conservation in its first intramolecular coiled-coil domain, responsible for interaction with V-antigen. ∆LcrG(1-70) localizes within the groove formed by long helices of LcrV, as observed in PcrV-∆PcrG(13-72) interaction. Inter-genus complexes of LcrV-PcrG and PcrV-LcrG exhibited elongated conformation and 1:1 heterodimeric state like the native complex of PcrV-PcrG and LcrV-LcrG. Both native and inter-genus complexes showed rigid tertiary structure, solvent-exposed hydrophobic patches, and cooperative melting behavior with high melting temperature. LcrV-PcrG and PcrV-LcrG showed nanomolar affinity of interaction, identical to PcrV-PcrG interaction, but stronger than LcrV-LcrG interaction. Calcium (a secretion blocker of T3SS) propels all the complexes towards a highly monodisperse form. Calcium and magnesium increase the helicity of the native and inter-genus complexes, and causes helix-helix stabilization. Stabilization of helices leads to a slight increase in the melting temperature by 1.5-2.0 °C. However, calcium does not alter the affinity of interaction of V-antigen and its regulator, emphasizing the effect of divalent of cations at the structural level without any regulatory implications. Therefore, the structural conservation of these inter-genus complexes could be the basis for their functional complementation.


Assuntos
Antígenos de Bactérias/química , Proteínas de Bactérias/química , Cálcio/química , Magnésio/química , Proteínas Citotóxicas Formadoras de Poros/química , Sequência de Aminoácidos , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Cálcio/farmacologia , Magnésio/farmacologia , Dados de Sequência Molecular , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Ligação Proteica , Estabilidade Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína
12.
Proc Natl Acad Sci U S A ; 110(10): 3871-6, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23431152

RESUMO

Superoxide dismutase-1 (SOD1) is a ubiquitous, Cu and Zn binding, free-radical defense enzyme whose misfolding and aggregation play a potential key role in amyotrophic lateral sclerosis, an invariably fatal neurodegenerative disease. Over 150 mutations in SOD1 have been identified with a familial form of the disease, but it is presently not clear what unifying features, if any, these mutants share to make them pathogenic. Here, we develop several unique computational assays for probing the thermo-mechanical properties of both ALS-associated and rationally designed SOD1 variants. Allosteric interaction-free energies between residues and metals are calculated, and a series of atomic force microscopy experiments are simulated with variable tether positions to quantify mechanical rigidity "fingerprints" for SOD1 variants. Mechanical fingerprinting studies of a series of C-terminally truncated mutants, along with an analysis of equilibrium dynamic fluctuations while varying native constraints, potential energy change upon mutation, frustratometer analysis, and analysis of the coupling between local frustration and metal binding interactions for a glycine scan of 90 residues together, reveal that the apo protein is internally frustrated, that these internal stresses are partially relieved by mutation but at the expense of metal-binding affinity, and that the frustration of a residue is directly related to its role in binding metals. This evidence points to apo SOD1 as a strained intermediate with "self-allostery" for high metal-binding affinity. Thus, the prerequisites for the function of SOD1 as an antioxidant compete with apo state thermo-mechanical stability, increasing the susceptibility of the protein to misfold in the apo state.


Assuntos
Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Regulação Alostérica , Substituição de Aminoácidos , Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/genética , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Fenômenos Biomecânicos , Fenômenos Biofísicos , Estabilidade Enzimática , Variação Genética , Humanos , Cinética , Metais/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Conformação Proteica , Processamento de Proteína Pós-Traducional , Deleção de Sequência , Superóxido Dismutase/genética , Superóxido Dismutase-1
13.
Inorg Chem ; 54(18): 8994-9001, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26361216

RESUMO

The synthesis and characterization of cationic two-dimensional metallamacrocycles having a hexagonal shape and cavity are described. Both macrocycles utilize a pyrazine motif containing an organometallic acceptor tecton with platinum(II) centers along with different donor ligands. While one macrocycle is a relatively larger [6 + 6], the other is a relatively smaller [2 + 2] polygon. A unique feature of the smaller ensemble is that it is an irregular polygon in which all six edges are not of equal length. Molecular modeling of these macrocycles confirmed the presence of hexagonal cavities. The ability of these π-electron rich macrocycles to act as potential hosts for relatively electron deficient nitroaromatics (DNT = 2,4-dinitrotoluene and PA = picric acid) has been studied using isothermal titration calorimetry (ITC) as a tool. Molecular dynamics simulation studies were subsequently performed to gain critical insight into the binding interactions between the nitroaromatic guest molecules (PA/DNT) and the ionic macrocycles reported herein.

14.
Inorg Chem ; 54(6): 2543-50, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25719530

RESUMO

The design, synthesis, and characterization of a new pyrazine-based ditopic platinum(II) organometallic complex are reported. The molecular structure of the organoplatinum pyrazine dipod was determined by single-crystal X-ray crystallography. The potential utility of this organometallic ditopic acceptor as a building block in the construction of neutral metallasupramolecular macrocycles containing the pyrazine motif was explored. Pyrazine motifs containing supramolecules were characterized by multinuclear NMR (including (1)H DOSY), mass spectrometry, and elemental analysis. The geometry of each supramolecular framework was optimized by employing the PM6 semiempirical molecular orbital method to predict its shape and size. The ability of the pyrazine-based organoplatinum complex to act as a host for nitroaromatic guest (2,4-dinitrotoluene and PA) molecules was explored by isothermal titration calorimetry (ITC). The binding stoichiometry and thermodynamic parameters of these host-guest complexation reactions were evaluated using ITC. Theoretical calculations were performed to obtain insight into the binding pattern between the organometallic host and nitroaromatic guests. The preferable binding propensity of the binding sites of complex 1 for both nitroaromatics (PA and 2,4-dinitrotoluene) determined by molecular simulation studies corroborates well with the experimental results as obtained by ITC experiments.

15.
Inorg Chem ; 53(13): 6875-85, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24971843

RESUMO

A hydrogen-evolving homogeneous Ni(P2N2)2 electrocatalyst with peripheral ester groups has been covalently attached to a 1,2,3-triazolyllithium-terminated planar glassy carbon electrode surface. Coupling proceeds with both the Ni(0) and the Ni(II) complexes. X-ray photoemission spectra show excellent agreement between the Ni(0) coupling product and its parent complex, and voltammetry of the surface-confined system shows that a single species predominates with a surface density of 1.3 × 10(-10) mol cm(-2), approaching the value estimated for a densely packed monolayer. With the Ni(II) system, both photoemission and voltammetric data show speciation to unidentified products on coupling, and the surface density is 6.7 × 10(-11) mol cm(-2). The surface-confined Ni(0) complex is an electroctalyst for hydrogen evolution, showing the onset of catalytic current at the same potential as the soluble parent complex. Decomposition of the surface-confined species is observed in acidic acetonitrile. This is interpreted to reflect the lability of the Ni(II)-phosphine interaction and the basicity of the free phosphine and bears on concurrent efforts to implement surface-confined Ni(P2N2)2 complexes in electrochemical or photoelectrochemical devices.

16.
Int J Biol Macromol ; 261(Pt 2): 129753, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286369

RESUMO

Lignin's antibacterial properties have become increasingly relevant due to the rise of microbial infectious diseases and antibiotic resistance. Lignin is capable of interacting electrostatically with bacteria and contains polyphenols that cause damage to their cell walls. These features make lignin a desirable material to exhibit antibacterial behavior. Therefore, lignin in antibacterial applications offers a novel approach to address the growing need for sustainable and effective antibacterial materials. Recent research has explored the incorporation of lignin in various biomedical applications, such as wound dressings, implants, and drug delivery systems, highlighting their potential as a sustainable alternative to synthetic antibacterial agents. Furthermore, the development of lignin-based nanomaterials with enhanced antimicrobial activity is an active area of research that holds great promise for the future. In this review, we have provided a summary of how lignin can be incorporated into different forms, such as composite and non-composite synthesis of antibacterial agents and their performances. The challenges and future considerations are also discussed in this review article.


Assuntos
Lignina , Nanoestruturas , Lignina/metabolismo , Polifenóis , Antibacterianos/farmacologia
17.
ACS Sustain Resour Manag ; 1(2): 237-249, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38414817

RESUMO

During stemwood harvesting, substantial volumes of logging residues are produced as a side stream. Nevertheless, industrially feasible processing methods supporting their use for other than energy generation purposes are scarce. Thus, the present study focuses on biorefinery processing, employing response surface methodology to optimize the pressurized extraction of industrially assorted needle-rich spruce logging residues with four solvents. Eighteen experimental points, including eight center point replicates, were used to optimize the extraction temperature (40-135 °C) and time (10-70 min). The extraction optimization for water, water with Na2CO3 + NaHSO3 addition, and aqueous ethanol was performed using yield, total dissolved solids (TDS), antioxidant activity (FRAP, ORAC), antibacterial properties (E. coli, S. aureus), total phenolic content (TPC), condensed tannin content, and degree of polymerization. For limonene, evaluated responses were yield, TDS, antioxidant activity (CUPRAC, DPPH), and TPC. Desirability surfaces were created using the responses showing a coefficient of determination (R2) > 0.7, statistical significance (p ≤ 0.05), precision > 4, and statistically insignificant lack-of-fit (p > 0.1). The optimal extraction conditions were 125 °C and 68 min for aqueous ethanol, 120 °C and 10 min for water, 111 °C and 49 min for water with Na2CO3 + NaHSO3 addition, and 134 °C and 41 min for limonene. The outcomes contribute insights to industrial logging residue utilization for value-added purposes.

18.
Chemphyschem ; 14(4): 788-96, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23143825

RESUMO

Femtosecond upconversion, single-molecule fluorescence resonance energy transfer (sm-FRET) and fluorescence correlation spectroscopy (FCS) are applied to study the competition between excited-state proton transfer (ESPT) and FRET [to rhodamine 6G (R6G)] of 8-hydroxypyranine-1,3,6-trisulfonate (HPTS) in cetyltrimethylammonium chloride (CTAC) micelles. Pyranine exhibits dual emission at λ(em)=430 nm for ROH and 520 nm for RO(-). The absorption spectrum of R6G (acceptor) has very good overlap with the RO(-) emission and poor overlap with ROH emission. It is observed that FRET occurs readily from the RO(-)* state of HPTS (donor) to R6G (acceptor). Multiple timescales of FRET were detected from the rise time of acceptor emission. The different timescales correspond to different donor-acceptor distances. The ultrafast components (8.5 and 13 ps) are assigned to FRET at a close contact of donor and acceptor (≈20 Å). The longer components (500 and 800 ps) arise from long-distance FRET from the donor to the acceptor (≈40 Å) located in different regions of the CTAC micelle. The larger donor-acceptor distances agree with those obtained from an sm-FRET study. On addition of 4 M NaCl to CTAC, the rate of proton transfer (k(PT)) slowed by about eight and two times, respectively, for the fast and slow sites of the CTAC micelle. As a result, the intensity of the ROH emission increases and that of RO(-) decreases. The decrease in the intensity of the RO(-) emission causes a decrease in the efficiency of FRET.


Assuntos
Compostos de Cetrimônio/química , Transferência Ressonante de Energia de Fluorescência , Prótons , Cloreto de Sódio/química , Cetrimônio , Micelas , Estrutura Molecular , Espectrometria de Fluorescência , Fatores de Tempo
19.
Langmuir ; 29(7): 2289-98, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23336846

RESUMO

Time-resolved confocal microscopy has been applied to study the cytoplasm and nucleus region of a single live Chinese hamster ovary (CHO) cell. To select the cytoplasm and the nucleus region, two different fluorescent probes are used. A hydrophobic fluorescent dye, DCM, localizes preferentially in the cytoplasm region of a CHO cell. A DNA binding dye, DAPI, is found to be inside the nucleus of the cell. The locations of the probes are clearly seen in the image. Emission maxima of the dyes (DCM in cytoplasm and DAPI in the nucleus) are compared to those of the same dyes in different solvents. From this, it is concluded that the polarity (dielectric constant, ε) of the microenvironment of DCM in the cytoplasm is ~15. The nucleus is found to be much more polar with ε ≈ 60 (as reported by DAPI). The diffusion coefficient (and hence viscosity) in the cytoplasm and the nucleus was determined using fluorescence correlation spectroscopy (FCS). The diffusion coefficient (D(t)) of the dye (DCM) in the cytoplasm is 2 µm(2) s(-1) and is ~150 times slower than that in bulk water (buffer). D(t) of DAPI in the nucleus (15 µm(2) s(-1)) is 30 times slower than that in bulk water (buffer). The extremely slow diffusion inside the cell has been ascribed to higher viscosity and also to the binding of the probes (DCM and DAPI) to large biological macromolecules. The solvation dynamics of water in the cytoplasm (monitored by DCM) exhibits an average relaxation time [τ(sol)] of 1250 ± 50 ps, which is about 1000 times slower than in bulk water (1 ps). The solvation dynamics inside the nucleus (studied using DAPI) is about 2-fold faster, [τ(sol)] ≈ 775 ps. The higher polarity, faster diffusion, and faster solvation dynamics in the nucleus indicates that it is less crowded and less restricted than the cytoplasm.


Assuntos
Microscopia Confocal/métodos , Soluções/química , Água/química , Água/metabolismo , Animais , Células CHO , Cricetinae , Espectrometria de Fluorescência
20.
Inorg Chem ; 52(23): 13674-84, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24228741

RESUMO

The reaction of a lithium acetylide-ethylenediamine complex with azide-terminated glassy carbon surfaces affords 1,2,3-triazolyllithium surface groups that are active toward covalent C-C coupling reactions, including salt metathesis with an aliphatic halide and nucleophilic addition at an aldehyde. Surface ferrocenyl groups were introduced by reaction with (6-iodohexyl)ferrocene; the voltammetry of electrode samples shows narrow, symmetric peaks indicating uniform attachment. X-ray photoelectron and reflectance infrared spectroscopic data provide further support for the surface-attached products. Formation of the 1,2,3-triazolyllithium linkage requires neither a catalyst nor a strained alkyne. Coverages obtained by this route are similar to those obtained by the more common Cu(I)-catalyzed alkyne-azide coupling (CuAAC) of ethynylferrocene with surface azides. Preconditioning of the glassy carbon disk electrodes at ambient temperature under nitrogen affords coverages comparable to those reported with preconditioning at 1000 °C under hydrogen/nitrogen.


Assuntos
Azidas/química , Carbono/química , Lítio/química , Compostos Organometálicos/química , Aldeídos/química , Catálise , Eletrodos , Etilenodiaminas/química , Compostos Ferrosos/química , Indicadores e Reagentes , Metalocenos , Triazóis/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa