Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 37(2): 137-180, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38011513

RESUMO

Breast cancer (BC) is one of the most heterogeneous groups of cancer. As every biotype of BC is unique and presents a particular "omic" signature, they are increasingly characterized nowadays with novel mass spectrometry (MS) strategies. BC therapeutic approaches are primarily based on the two features of human epidermal growth factor receptor 2 (HER2) and estrogen receptor (ER) positivity. Various strategic MS implementations are reported in studies of BC also involving data independent acquisitions (DIAs) of MS which report novel differential proteomic, lipidomic, proteogenomic, phosphoproteomic, and metabolomic characterizations associated with the disease and its therapeutics. Recently many "omic" studies have aimed to identify distinct subsidiary biotypes for diagnosis, prognosis, and targets of treatment. Along with these, drug-induced-resistance phenotypes are characterized by "omic" changes. These identifying aspects of the disease may influence treatment outcomes in the near future. Drug quantifications and characterizations are also done regularly and have implications in therapeutic monitoring and in drug efficacy assessments. We report these studies, mentioning their implications toward the understanding of BC. We briefly provide the MS instrumentation principles that are adopted in such studies as an overview with a brief outlook on DIA-MS strategies. In all of these, we have chosen a model cancer for its revelations through MS-based "omics".


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/metabolismo , Proteômica , Receptores de Estrogênio/metabolismo , Prognóstico , Espectrometria de Massas
2.
Water Sci Technol ; 86(11): 2808-2819, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36515190

RESUMO

Rubber processing generates a large volume of wastewater containing rubber latex residues and chemicals. Remediation of the wastewater needs a cost-effective and environment-friendly treatment method. For this study, Moringa oleifera stem bark and Pseudomonas sp. bacteria were used for adsorption and microbial treatment of the effluent. The adsorbent surface was mostly amorphous with crystallinity index 37.9% and the BET surface area was 6.622 m2/g. FTIR analysis indicated involvement of O-H stretching, ketone α, ß-unsaturated, C-H stretching, carboxylic acid and derivatives O-C stretching functional groups in the adsorption process. The assessment of the above two agents was based on their reduction capabilities of the toxic parameters, such as total suspended and dissolved solids, total solids, biological and chemical oxygen demand, sulphate, ammonium, dissolved oxygen, phosphate, pH, electrical conductivity, turbidity, and oxidation reduction potential from the wastewater. A comparative study of the present work revealed that both the agents were effective in reduction of most of the above parameters below the safe discharge limits. However, the adsorption using Moringa oleifera stem bark was better compared to the biodegradation by Pseudomonas sp. bacteria. The main challenges that typically accompany biodegradation include microbe handling and a lower removal percentage than adsorption.


Assuntos
Moringa oleifera , Águas Residuárias , Moringa oleifera/química , Borracha , Casca de Planta , Pseudomonas , Adsorção
3.
J Nanobiotechnology ; 17(1): 92, 2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31451110

RESUMO

Carbon dots (CDs) are the new fellow of carbon family having a size less than 10 nm and attracted much attention of researchers since the last decade because of their unique characteristics, such as inexpensive and facile synthesis methods, easy surface modification, excellent photoluminescence, outstanding water solubility, and low toxicity. Due to these unique characteristics, CDs have been extensively applied in different kind of scientific disciplines. For example in the photocatalytic reactions, drug-gene delivery system, in vitro and in vivo bioimaging, chemical and biological sensing as well as photodynamic and photothermal therapies. Mainly two types of methods are available in the literature to synthesize CDs: the top-down approach, which refers to breaking down a more massive carbon structure into nanoscale particles; the bottom-up approach, which refers to the synthesis of CDs from smaller carbon units (small organic molecules). Many review articles are available in the literature regarding the synthesis and applications of CDs. However, there is no such review article describing the synthesis and complete application of CDs derived from small organic molecules together. In this review, we have summarized the progress of research on CDs regarding its synthesis from small organic molecules (bottom-up approach) via hydrothermal/solvothermal treatment, microwave irradiation, ultrasonic treatment, and thermal decomposition techniques as well as applications in the field of bioimaging, drug/gene delivery system, fluorescence-based sensing, photocatalytic reactions, photo-dynamic therapy (PDT) and photo-thermal (PTT) therapy based on the available literature. Finally, the challenges and future direction of CDs are discussed.


Assuntos
Carbono/química , Pontos Quânticos/química , Bibliotecas de Moléculas Pequenas/química , Animais , Catálise , Humanos , Nanopartículas/química
4.
J Nanobiotechnology ; 17(1): 84, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31291944

RESUMO

BACKGROUND: Nanoceria has recently received much attention, because of its widespread biomedical applications, including antibacterial, antioxidant and anticancer activity, drug/gene delivery systems, anti-diabetic property, and tissue engineering. MAIN BODY: Nanoceria exhibits excellent antibacterial activity against both Gram-positive and Gram-negative bacteria via the generation of reactive oxygen species (ROS). In healthy cells, it acts as an antioxidant by scavenging ROS (at physiological pH). Thus, it protects them, while in cancer cells (under low pH environment) it acts as pro-oxidant by generating ROS and kills them. Nanoceria has also been effectively used as a carrier for targeted drug and gene delivery in vitro and in vivo models. Besides, nanoceria can also act as an antidiabetic agent and confer protection towards diabetes-associated organ pathophysiology via decreasing the ROS level in diabetic subjects. Nanoceria also possesses excellent potential in the field of tissue engineering. In this review, firstly, we have discussed the different methods used for the synthesis of nanoceria as these are very important to control the size, shape and Ce3+/Ce4+ ratio of the particles upon which the physical, chemical, and biological properties depend. Secondly, we have extensively reviewed the different biomedical applications of nanoceria with probable mechanisms based on the literature reports. CONCLUSION: The outcome of this review will improve the understanding about the different synthetic procedures and biomedical applications of nanoceria, which should, in turn, lead to the design of novel clinical interventions associated with various health disorders.


Assuntos
Cério/química , Nanopartículas/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Cério/farmacologia , Sistemas de Liberação de Medicamentos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Engenharia Tecidual/métodos
5.
Toxicol Ind Health ; 32(9): 1700-10, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25903088

RESUMO

Hexavalent chromium (Cr(VI)) is an environmental contaminant that is associated with reproductive abnormalities in both humans and animals. In the present study, we evaluated the cytotoxic effect of Cr(VI) on sperm function and subsequent embryo development after in vitro fertilization (IVF). Sperm obtained from BDF1 male mice were treated with potassium dichromate (0, 3.125, 6.25, 12.5, 25, or 50 µM) for 3 h. Cr(VI) significantly decreased sperm viability and acrosome reaction with increasing dose. These Cr(VI)-treated sperms were further used for IVF of oocytes obtained from BDF1 female mice. Results showed that Cr(VI)-treated sperm caused a significant reduction in IVF success, higher developmental arrest at the two-cell stage of embryos, and delayed blastocyst formation with increasing dose. In particular, most blastocysts from the Cr(VI)-treated sperm resulted in hatching failure as well as decreased inner cell mass and trophectoderm (TE). Furthermore, blastocysts obtained from Cr(VI)-treated sperm showed lower expression of not only TE-associated genes (eomes, cdx2, and krt8) but also pluripotent marker genes (sox2, pou5f1, and klf4) that are responsible for further embryo development of blastocyst embryos. The results of our current study showed that Cr(VI)-treated sperm had negative effects on oocyte fertilization and subsequent embryo development.


Assuntos
Carcinógenos Ambientais/toxicidade , Cromo/toxicidade , Ectogênese/efeitos dos fármacos , Fertilização in vitro/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Teratogênicos/toxicidade , Reação Acrossômica/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Blastocisto/efeitos dos fármacos , Blastocisto/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cultura Embrionária , Feminino , Fator 4 Semelhante a Kruppel , Masculino , Camundongos , Concentração Osmolar , Dicromato de Potássio/toxicidade , Espermatozoides/citologia
6.
Rep Pract Oncol Radiother ; 19(6): 428-32, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25337417

RESUMO

AIM: To investigate incidence of toxicity and related hospitalization among patients treated at our institute by a short course of palliative cranial radiotherapy against a longer, widely established schedule. BACKGROUND: Shorter schedule palliative cranial radiotherapy is more convenient for patients and reduce waiting times. Although many studies have established safety of short schedules, the need for hospitalization due to acute treatment toxicity remains under-explored. Hospital admissions are an economic burden both for the patient and healthcare system in a limited resource setting. Delivery of treatment on an outpatient basis and within shorter times is preferred by patients, caregivers and healthcare staff. MATERIALS AND METHODS: This was a prospective study on 68 patients treated with palliative whole brain radiotherapy between November 2010 and October 2012. One group received 20 Gy in 5 fractions over 1 week and the other group, 30 Gy in 10 fractions over 2 weeks. Treatment toxicity due to cranial radiotherapy was assessed as per RTOG acute and late toxicity criteria. Need for hospitalization owing to acute toxicity was also noted. Significant differences in the study parameters between the two groups were calculated by Fisher's t-test. RESULTS: Requirement for hospital stay due to acute toxicity was not significantly different between the two groups. Patients in both groups experienced similar toxicity both during and after treatment. CONCLUSIONS: The shorter course entailed no significant increase in toxicity related admissions, suitable for limited resource settings where patient transport is difficult, there are financial constraints, and the healthcare system is overburdened.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38746073

RESUMO

This study was conducted to isolate and identify the chemical compounds from the roots of Aloe debrana (L.) and evaluate their antioxidant and antibacterial activities. From the acetone (99.5%) extract of the roots of this plant, four anthraquinones, such as chrysophanol (1), asphodeline (2), aloesaponarin I (5), and laccaic acid D-methyl ester (6), and a new catechol derivative, 5-allyl-3-methoxybenzene-1,2-diol (3), were isolated and elucidated by different chromatographic and spectroscopic methods together with linoleic acid (4), respectively. Compounds 2, 3, and 4 were reported here for the first time from this plant and compound 3 from the genus Aloe. The compounds were evaluated for their antioxidant activity using H2O2 and DPPH assays and bactericidal activity against S. aureus and E. coli. Compounds 3 and 6 showed highest antioxidant activities with IC50 values of 19.38 ± 0.64 and 32.81 ± 0.78 µg/mL in DPPH, and 28.52 ± 1.08 and 27.31 ± 1.46 µg/mL in H2O2, respectively. The isolated compounds also demonstrated considerable activity towards S. aureus. Among these compounds, compound 3 exhibited the highest activity (91.20 ± 0.12% and 9.14 ± 0.93 mm at 1.0 mg/mL) against this bacterium. The overall results suggest that the isolated compounds may be considered as potential sources of the bioactive agents to be used in the pharmacological, food, and other industries. Moreover, their high sensitivity against S. aureus may also support the use of A. debrana plant in the traditional medicine to treat wounds. Therefore, the isolated compounds are responsible for medicinal properties of this plant.

8.
J Conserv Dent Endod ; 27(6): 621-625, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38989483

RESUMO

Aim: The study aimed to comparatively evaluate the effect of eugenol exposure time on the micro-shear bond strength (µ-SBS) of etch-and-rinse and a self-etch adhesive to dentin. Materials and Methods: One hundred and twelve teeth samples were prepared from bisectioning 56 freshly extracted human mandibular molars and were randomly divided into 14 subgroups of 8 samples each (n = 8). Three subgroups containing eugenol and a noneugenol-based restorative material were placed on the dentin surface and left for 24 h, 7 days, and 14 days, respectively, and were compared to a control. Two bonding systems were evaluated: one being etch-and-rinse and the other self-etch adhesive. The µ-SBS were calculated and expressed in MPa. Statistical Analysis: The data were analyzed using mixed model analysis of variance. The level of statistical significance was set at 5%. Results: There was a statistically significant reduction in the µ-SBS values when the self-etch adhesive was used, after the removal of eugenol-containing cement placed for 24 h. However, the reduction in the µ-SBS values after 7 days or 14 days was not significant. Conclusion: Exposure to eugenol containing temporary cement for 24 h significantly reduces the µ-SBS of self-etching adhesives to dentin. However, exposure for 1 week or more has minimal effects.

9.
Arch Toxicol ; 87(7): 1157-80, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23543009

RESUMO

Oxidative stress basically defines a condition in which prooxidant-antioxidant balance in the cell is disturbed; cellular biomolecules undergo severe oxidative damage, ultimately compromising cells viability. In recent years, a number of studies have shown that oxidative stress could cause cellular apoptosis via both the mitochondria-dependent and mitochondria-independent pathways. Since these pathways are directly related to the survival or death of various cell types in normal as well as pathophysiological situations, a clear picture of these pathways for various active molecules in their biological functions would help designing novel therapeutic strategy. This review highlights the basic mechanisms of ROS production and their sites of formation; detail mechanism of both mitochondria-dependent and mitochondria-independent pathways of apoptosis as well as their regulation by ROS. Emphasis has been given on the redox-sensitive ASK1 signalosome and its downstream JNK pathway. This review also describes the involvement of oxidative stress under various environmental toxin- and drug-induced organ pathophysiology and diabetes-mediated apoptosis. We believe that this review would provide useful information about the most recent progress in understanding the mechanism of oxidative stress-mediated regulation of apoptotic pathways. It will also help to figure out the complex cross-talks between these pathways and their modulations by oxidative stress. The literature will also shed a light on the blind alleys of this field to be explored. Finally, readers would know about the ROS-regulated and apoptosis-mediated organ pathophysiology which might help to find their probable remedies in future.


Assuntos
Apoptose , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais
10.
Theriogenology ; 208: 15-27, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37290144

RESUMO

Melatonin, the pineal hormone, is synthesized and secreted rhythmically in accordance with various environmental cues especially photo-thermal conditions. The reproductive physiology of seasonal breeders is synchronized with the surroundings by melatonin as a neuroendocrine mediator to acts as an important factor in fish reproduction. However, the data on the participation of melatonin in male reproduction and the putative interaction with the process of spermatogenesis in fish is scarce till date. So, major objectives of the current study are to determine for the first time, the relationship, if any, between seasonal levels of melatonin and testicular development and maturation of the germ cells, and also the involvements of specific meteorological parameters in spermatogenesis under natural photo-thermal conditions. We measured the concentration of circulatory and testicular melatonin; value of gonadosomatic index (GSI), relative percentages of different developing spermatogenic cells, area and perimeter (size and shape) of seminiferous lobules along with the level/duration of rainfall, water temperature and day length in six reproductive phases throughout an annual cycle in adult male catfish (Clarias batrachus). Intra-testicular and serum melatonin concentration showed a similar seasonal pattern with a peak during "functional maturity" phase and trough during "slow spermatogenesis" phase. Correlation as well as regression analyses also supported this positive relationship. Interestingly, intra-testicular melatonin also showed a significant positive correlation with GSI and relative percentage as well as lobular size of mature stages (spermatid and spermatozoa) of germ cells in an annual cycle. Furthermore, meteorological factors exhibited as critical cues to regulate the dynamics (in %) of spermatogenic cells and the level of testicular melatonin throughout the annual gonadal cycle. Our results corroborated by principal component (PC) analysis and showed very clearly that active "functional maturity" state is characterized by GSI, testicular melatonin, relative abundance and lobular size of mature spermatogenic stages as key internal oscillators; and studied environmental variables as the external clues for the regulation of spawning process. Collectively, the present data revealed that there is a relationship between melatonin levels and testicular growth and development of germ cells in Clarias batrachus under natural photo-thermal conditions.


Assuntos
Peixes-Gato , Melatonina , Masculino , Animais , Espermatozoides , Estações do Ano , Espermátides
11.
J Mol Endocrinol ; 71(2)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37289019

RESUMO

Melatonin, a pineal hormone, has potential role on steroidogenesis, growth and maturation of sperm and ovum during gametogenesis. The possible use of this indolamine as an antioxidant in the production of good quality gametes opens up a new area of current research. Nowadays, a large number of reproductive dysfunctions like infertility and failure in fertilization due to gametic malformations are major concern worldwide. So, understanding molecular mechanisms including interacting genes and their action is a prerequisite to the therapeutic approach against these issues. The aim of present bioinformatic study is the detection of molecular network concerning therapeutic potential of melatonin in gametogenesis. It includes target genes identification, gene ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, network analysis, prediction of signalling pathways and molecular docking. We obtained common top 52 targets of melatonin in the process of gametogenesis. They are involved in biological processes related to the development of gonads and primary sexual characteristics and sex differentiation. We took top 10 pathways out of total 190 enriched pathways for further analysis. Subsequently, principal component analysis also revealed that among top ten hub targets (TP53, CASP3, MAPK1, JUN, ESR1, CDK1, CDK2, TNF, GNRH1 and CDKN1A), only TP53, JUN and ESR1were significantly interacted with melatonin on the basis of squared cosine value. So, present in silico investigation provides considerable information on the interactive network between therapeutic targets of melatonin along with the involvement of intracellular signalling cascade regulating biological processes associated with the gametogenesis. This novel approach may be pertinent in improving modern research on reproductive dysfunctions associated abnormalities.


Assuntos
Fenômenos Biológicos , Melatonina , Masculino , Humanos , Melatonina/farmacologia , Simulação de Acoplamento Molecular , Sêmen , Gametogênese
12.
Heliyon ; 9(12): e22606, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38125454

RESUMO

Antimicrobial resistance (AMR) is a serious and most urgent global threat to human health. AMR is one of today's biggest difficulties in the health system and has the potential to harm people at any stage of life, making it a severe public health issue. There must be fewer antimicrobial medicines available to treat diseases given the rise in antibiotic-resistant organisms. If no new drugs are created or discovered, it is predicted that there won't be any effective antibiotics accessible by 2050. In most cases, Streptococcus increased antibiotic resistance by forming biofilms, which account for around 80 % of all microbial infections in humans. This highlights the need to look for new strategies to manage diseases that are resistant to antibiotics. Therefore, development alternative, biocompatible and high efficacy new strategies are essential to overcome drug resistance. Recently, bacterial derived extracellular vesicles have been applied to tackle infection and reduce the emergence of drug resistance. Therefore, the objective of the current study was designed to assess the antibacterial and antibiofilm potential of outer membrane vesicles (OMVs) derived from Pseudomonas aeruginosa againstStreptococcus mutans. According to the findings of this investigation, the pure P. aeruginosa outer membrane vesicles (PAOMVs) display a size of 100 nm. S. mutans treated with PAOMVs showed significant antibacterial and antibiofilm activity. The mechanistic studies revealed that PAOMVs induce cell death through excessive generation of reactive oxygen species and imbalance of redox leads to lipid peroxidation, decreased level of antioxidant markers including glutathione, superoxide dismutase and catalase. Further this study confirmed that PAOMVs significantly impairs metabolic activity through inhibiting lactate dehydrogenase activity (LDH), adenosine triphosphate (ATP) production, leakage of proteins and sugars. Interestingly, combination of sub-lethal concentrations of PAOMVs and antibiotics enhances cell death and biofilm formation of S. mutans. Altogether, this work, may serve as an important basis for further evaluation of PAOMVs as novel therapeutic agents against bacterial infections.

13.
Int J Pharm ; 631: 122555, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36586636

RESUMO

Cancer is a disease of global importance. In order to mitigate conventional chemotherapy-related side effects, phytochemicals with inherent anticancer efficacy have been opted. However, the use of nanotechnology is essential to enhance the bioavailability and therapeutic efficacy of these phytochemicals. Herein, we have formulated folic acid conjugated polyacrylic acid capped mesoporous silica nanoparticles (∼47.6 nm in diameter) for pH-dependent targeted delivery of chrysin to breast cancer (MCF-7) cells. Chrysin loaded mesoporous silica nanoparticles (Chr- mSiO2@PAA/FA) have been noted to induce apoptosis in MCF-7 cells through oxidative insult and mitochondrial dysfunction with subsequent G1 arrest. Further, in tumor bearing mice, intravenous incorporation of Chr-mSiO2@PAA/FA has been noticed to enhance the anti-neoplastic effects of chrysin via tumor site-specific accumulation. Enhanced cytotoxicity of chrysin contributed towards in vivo tumor regression, restoration of normalized tissue architecture and maintenance of healthy body weight. Besides, no serious systemic toxicity was manifested in response to Chr-mSiO2@PAA/FA administration in vivo. Thus, the study evokes about the anticancer potentiality of chrysin and its increased therapeutic activity via incorporation into folic acid conjugated mesoporous silica nanoparticles, which may hold greater impact in field of future biomedical research.


Assuntos
Nanopartículas , Neoplasias , Camundongos , Animais , Sistemas de Liberação de Medicamentos , Dióxido de Silício , Ácido Fólico , Concentração de Íons de Hidrogênio , Portadores de Fármacos , Porosidade
14.
Heliyon ; 9(11): e21824, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034707

RESUMO

These days carbon dots have been developed for multiple biomedical applications. In the current study, the transfection potential of synthesized carbon dots from single biopolymers such as chitosan, PEI-2kDa, and PEI-25kDa (CS-CDs, PEI2-CDs, and PEI25-CDs) and by combining two biopolymers (CP2-CDs and CP25-CDs) through a bottom-up approach have been investigated. The characterization studies revealed successful synthesis of fluorescent, positively charged carbon dots <20 nm in size. Synthesized carbon dots formed a stable complex with plasmid DNA (EGFP-N1) and miRNA-153 that protected DNA/miRNA from serum-induced degradation. In-vitro cytotoxicity analysis revealed minimal cytotoxicity in cancer cell lines (A549 and MDA-MB-231). In-vitro transfection of EGFP-N1 plasmid DNA with PEI2-CDs, PEI25-CDs and CP25-CDs demonstrated that these CDs could strongly transfect A549 and MDA-MB-231 cells. The highest EGFP-N1 plasmid transfection efficiency was observed with PEI2-CDs at a weight ratio of 32:1. PEI25-CDs polyplex showed maximum transfection at a weight ratio of 8:1 in A549 at a weight ratio of 16:1 in MDA-MB-231 cells. CP25-CDs exhibited the highest transfection at a weight ratio of 16:1 in both cell lines. The in-vitro transfection of target miRNA, i.e., miR-153 in A549 and MDA-MB-231 cells with PEI2-CDs, PEI25-CDs, and CP25-CDs suggested successful transfer of miR-153 into cells which induced significant cell death in both cell lines. Importantly, CS-CDs and CP2-CDs could be tolerated by cells up to 200 µg/mL concentration, while PEI2-CDs, PEI25-CDs, and CP25-CDs showed non-cytotoxic behavior at low concentrations (25 µg/mL). Together, these results suggest that a combination of carbon dots synthesized from chitosan and PEI (CP25-CDs) could be a novel vector for transfection nucleic acids that can be utilized in cancer therapy.

15.
Toxicol Appl Pharmacol ; 258(2): 296-308, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22138235

RESUMO

Hyperlipidemia, inflammation and altered antioxidant profiles are the usual complications in diabetes mellitus. In the present study, we investigated the therapeutic potential of taurine in diabetes associated cardiac complications using a rat model. Rats were made diabetic by alloxan (ALX) (single i.p. dose of 120mg/kg body weight) and left untreated or treated with taurine (1% w/v, orally, in water) for three weeks either from the day of ALX exposure or after the onset of diabetes. Animals were euthanized after three weeks. ALX-induced diabetes decreased body weight, increased glucose level, decreased insulin content, enhanced the levels of cardiac damage markers and altered lipid profile in the plasma. Moreover, it increased oxidative stress (decreased antioxidant enzyme activities and GSH/GSSG ratio, increased xanthine oxidase enzyme activity, lipid peroxidation, protein carbonylation and ROS generation) and enhanced the proinflammatory cytokines levels, activity of myeloperoxidase and nuclear translocation of NFκB in the cardiac tissue of the experimental animals. Taurine treatment could, however, result to a decrease in the elevated blood glucose and proinflammatory cytokine levels, diabetes-evoked oxidative stress, lipid profiles and NFκB translocation. In addition, taurine increased GLUT 4 translocation to the cardiac membrane by enhanced phosphorylation of IR and IRS1 at tyrosine and Akt at serine residue in the heart. Results also suggest that taurine could protect cardiac tissue from ALX induced apoptosis via the regulation of Bcl2 family and caspase 9/3 proteins. Taken together, taurine supplementation in regular diet could play a beneficial role in regulating diabetes and its associated complications in the heart.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Glucose/metabolismo , Insulina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Taurina/farmacologia , Aloxano , Animais , Apoptose/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Diabetes Mellitus Experimental/fisiopatologia , Transportador de Glucose Tipo 4/metabolismo , Coração/efeitos dos fármacos , Lipídeos/sangue , Masculino , NF-kappa B/metabolismo , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
16.
Toxicol Appl Pharmacol ; 260(1): 35-47, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22310181

RESUMO

Mangiferin, a xanthone glucoside, is well known to exhibit antioxidant, antiviral, antitumor, anti-inflammatory and gene-regulatory effects. In the present study, we isolated mangiferin from the bark of Mangifera indica and assessed its beneficial role in galactosamine (GAL) induced hepatic pathophysiology. GAL (400 mg/kg body weight) exposed hepatotoxic rats showed elevation in the activities of serum ALP, ALT, levels of triglycerides, total cholesterol, lipid-peroxidation and reduction in the levels of serum total proteins, albumin and cellular GSH. Besides, GAL exposure (5 mM) in hepatocytes induced apoptosis and necrosis, increased ROS and NO production. Signal transduction studies showed that GAL exposure significantly increased the nuclear translocation of NFκB and elevated iNOS protein expression. The same exposure also elevated TNF-α, IFN-γ, IL-1ß, IL-6, IL-12, IL-18 and decreased IL-10 mRNA expressions. Furthermore, GAL also decreased the protein expression of Nrf2, NADPH:quinine oxidoreductase-1, heme oxygenase-1 and GSTα. However, mangiferin administration in GAL intoxicated rats or coincubation of hepatocytes with mangiferin significantly altered all these GAL-induced adverse effects. In conclusion, the hepatoprotective role of mangiferin was due to induction of antioxidant defense via the Nrf2 pathway and reduction of inflammation via NFκB inhibition.


Assuntos
Antioxidantes/farmacologia , Galactosamina/toxicidade , Hepatopatias/prevenção & controle , Mangifera/química , Xantonas/farmacologia , Animais , Antioxidantes/isolamento & purificação , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Inflamação/fisiopatologia , Inflamação/prevenção & controle , Hepatopatias/fisiopatologia , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Xantonas/isolamento & purificação
17.
Amino Acids ; 43(4): 1509-23, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22302365

RESUMO

Hyperglycemia-induced oxidative stress plays a vital role in the progression of diabetic nephropathy. The renoprotective nature of taurine has also been reported earlier; but little is known about the mechanism of this beneficial action. The present study has, therefore, been carried out to explore in detail the mechanism of the renoprotective effect of taurine under diabetic conditions. Diabetes was induced in rats by alloxan (single i.p. dose of 120 mg/kg body weight) administration. Taurine was administered orally for 3 weeks (1% w/v in drinking water) either from the day on which alloxan was injected or after the onset of diabetes. Alloxan-induced diabetic rats showed a significant increase in plasma glucose, enhanced the levels of renal damage markers, plasma creatinine, urea nitrogen and urinary albumin. Diabetic renal injury was associated with increased kidney weight to body weight ratio and glomerular hypertrophy. Moreover, it increased the productions of reactive oxygen species, enhanced lipid peroxidation and protein carbonylation in association with decreased intracellular antioxidant defense in the kidney tissue. In addition, hyperglycemia enhanced the levels of proinflammatory cytokins (TNF-α, IL-6, IL-1ß) and Na(+)--K(+)-ATPase activity with a concomitant reduction in NO content and eNOS expression in diabetic kidney. Investigation of the oxidative stress-responsive signaling cascades showed the upregulation of PKCα, PKCß, PKCε and MAPkinases in the renal tissue of the diabetic animals. However, taurine administration decreased the elevated blood glucose and proinflammatory cytokine levels, reduced renal oxidative stress (via decrease in xanthine oxidase activity, AGEs formation and inhibition of p47phox/CYP2E1 pathways), improved renal function and protected renal tissue from alloxan-induced apoptosis via the regulation of Bcl-2 family and caspase-9/3 proteins. Taurine supplementation in regular diet could, therefore, be beneficial to regulate diabetes-associated renal complications.


Assuntos
Antioxidantes/administração & dosagem , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Rim/efeitos dos fármacos , Taurina/administração & dosagem , Administração Oral , Albuminas/análise , Aloxano , Animais , Apoptose/efeitos dos fármacos , Glicemia/análise , Nitrogênio da Ureia Sanguínea , Creatinina/sangue , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/complicações , Nefropatias Diabéticas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Rim/metabolismo , Rim/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Proteínas Quinases/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
18.
Amino Acids ; 42(5): 1839-55, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21476075

RESUMO

The protective effect of taurine against doxorubicin-induced testicular oxidative stress and apoptosis was investigated in rats. Male rats 8 weeks of age were treated with doxorubicin alone (3 mg/kg, i.p. every other day for 3 doses), taurine alone (150 mg/kg, i.p. every other day for 3 doses) or taurine plus doxorubicin (each dose given 1 day post-taurine). After 28 days, rat testes were collected and analysed. Rats treated with doxorubicin alone displayed reduced body and testicular weights, decreased sperm counts, increased the extent of testicular toxicity (as evident from the decreased activity of testicular marker enzyme, SDH) and oxidative stress (reduced GSH, increased GSSG and MDA levels), decreased antioxidant (SOD, CAT, GST, GPx, GR) and membrane-bound (Na+-K+ and Ca2+ ATPases) enzyme activities as well as plasma testosterone. Reverse transcriptase-PCR analysis revealed that doxorubicin induced a marked decrease in the expression of key enzymes for testicular androgenesis (3ß-HSD, 17ß-HSD) and testicular steroidogenic acute regulatory (StAR) protein. Western blot analysis showed that doxorubicin administration markedly increased the levels of caspase-9, 3, -8, -12, Fas, Bid and disturbed the Bcl-2 family protein balance. These results suggest that doxorubicin can trigger intrinsic, extrinsic and endoplasmic reticulum-associated apoptotic pathways in testicular pathophysiology. Doxorubicin also triggered activation of JNK, p38MAP kinases and p53. However, taurine could effectively prevent nearly all of these doxorubicin-induced testicular abnormalities, thereby proving to be an effective cytoprotectant.


Assuntos
Apoptose/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/administração & dosagem , Taurina/administração & dosagem , Testículo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Apoptose/genética , Caspase 12/genética , Caspase 12/metabolismo , Citoproteção , Masculino , Ratos , Testículo/metabolismo , Testosterona/sangue , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Receptor fas/genética , Receptor fas/metabolismo
19.
Amino Acids ; 42(5): 1669-83, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21373768

RESUMO

Mercury (Hg) is one of the universal environmental pollutants and is responsible for various organ pathophysiology including oxidative stress-induced hepatic disorders. In the present study, we aimed to explore the protective role of glycine in Hg-induced cytotoxicity and cell death in murine hepatocytes. Exposure of mercury (20 µM), in the form HgCl2 for 1 h, significantly enhanced the ALT and ALP leakage, increased reactive oxygen species production, reduced cell viability and distorted the antioxidant status of hepatocytes. Flow cytometric analyses shows that Hg-induced apoptotic death in hepatocytes. Mechanism of this pathophysiology involves reduced mitochondrial membrane potential, variations in Bcl-2/Bad proteins, activation of caspases and cleavage of PARP protein. In addition, Hg distinctly increased NF-κB phosphorylation in association with IKKα phosphorylation and IκBα degradation. Concurrent treatment with glycine (45 mM), however, reduced Hg-induced oxidative stress, attenuated the changes in NF-κB phosphorylation and protects hepatocytes from Hg-induced apoptotic death. Hg also distinctly increased the phosphorylation of p38, JNK and ERK mitogen-activated protein kinase (MAPKs). Glycine treatment suppressed these apoptotic events, signifying its protective role in Hg-induced hepatocyte apoptosis as referred by reduction of p38, JNK and ERK MAPK signaling pathways. Results suggest that glycine can modulate Hg-induced oxidative stress and apoptosis in hepatocytes probably because of its antioxidant activity and functioning via mitochondria-dependent pathways and could be a beneficial agent in oxidative stress-mediated liver diseases.


Assuntos
Apoptose , Glicina/administração & dosagem , Hepatócitos , Mercúrio/toxicidade , Mitocôndrias , Substâncias Protetoras/administração & dosagem , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Potencial da Membrana Mitocondrial , Camundongos , Mitocôndrias/efeitos dos fármacos , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Toxicol Rep ; 9: 961-969, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875254

RESUMO

Recently, different natural bioactive compounds have been used as anticancer agents for their various therapeutic benefits and non-toxic nature to other organs. However, they have various restrictions in preclinical and clinical studies due to their non-targeting nature and insufficient bioavailability. As a result, a zinc oxide nanoparticle (ZnO) based drug delivery medium was constructed which has good bio-compatibility and bio-degradability. It also displays cancer cell-specific drug delivery in a targeted and controlled way. In the present study, phenylboronic acid (PBA) tagged ZnO nanoparticles (ZnO-PBA) was fabricated and in the next step, chrysin (a natural bio-active molecule) was loaded to it to form the nanoconjugate (ZnO-PBA-Chry). Different characterization techniques were used to confirm the successful fabrication of ZnO-PBA-Chry. PBA-tagging to the nanoparticle helps in targeted delivery of chrysin in lung cancer cells (A549) as PBA binds with sialic acid receptors which are over-expressed on the surface of A549 cells. As ZnO dissociates in acidic pH, it shows stimuli-responsive release of chrysin in tumor microenvironment. Application of ZnO-PBA-Chry nanohybrid in lung cancer cell line A549 caused oxidative stress mediated intrinsic cell death and cell cycle arrest. ZnO-PBA-Chry downregulated MMP-2 and VE-Cadherin, thereby inhibiting metastasis and the invasive property of A549 cells.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa