Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(9): 4921-4930, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32071223

RESUMO

Antibiotic-resistant superbug bacteria represent a global health problem with no imminent solutions. Here we demonstrate that the combination (termed AB569) of acidified nitrite (A-NO2-) and Na2-EDTA (disodium ethylenediaminetetraacetic acid) inhibited all Gram-negative and Gram-positive bacteria tested. AB569 was also efficacious at killing the model organism Pseudomonas aeruginosa in biofilms and in a murine chronic lung infection model. AB569 was not toxic to human cell lines at bactericidal concentrations using a basic viability assay. RNA-Seq analyses upon treatment of P. aeruginosa with AB569 revealed a catastrophic loss of the ability to support core pathways encompassing DNA, RNA, protein, ATP biosynthesis, and iron metabolism. Electrochemical analyses elucidated that AB569 produced more stable SNO proteins, potentially explaining one mechanism of bacterial killing. Our data implicate that AB569 is a safe and effective means to kill pathogenic bacteria, suggesting that simple strategies could be applied with highly advantageous therapeutic/toxicity index ratios to pathogens associated with a myriad of periepithelial infections and related disease scenarios.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Ácido Edético/farmacologia , Nitrito de Sódio/farmacologia , Animais , Antibacterianos/uso terapêutico , Biofilmes/efeitos dos fármacos , Modelos Animais de Doenças , Regulação para Baixo , Farmacorresistência Bacteriana/efeitos dos fármacos , Ácido Edético/química , Pneumopatias/tratamento farmacológico , Pneumopatias/microbiologia , Redes e Vias Metabólicas , Camundongos , Nitritos/química , Nitritos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos
2.
Am J Transplant ; 20(2): 399-410, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31595669

RESUMO

Donor-specific antibodies (DSAs) have a deleterious effect on allografts and remain a major immunologic barrier in transplantation. Current therapies to eliminate DSAs are ineffective in highly HLA-sensitized patients. Proteasome inhibitors have been employed as a strategy to target bone marrow plasma cells (BMPCs), the source of long-term antibody production; however, their efficacy has been limited by poorly defined drug-resistance mechanisms. Here, we performed transcriptomic profiling of CD138+ BMPCs that survived in vivo desensitization therapy with the proteasome inhibitor carfilzomib to identify mechanisms of drug resistance. The results revealed a genomic signature that included increased expression of the immunoproteasome, a highly specialized proteasomal variant. Western blotting and functional studies demonstrated that catalytically active immunoproteasomes and the immunoproteasome activator PA28 were upregulated in carfilzomib-resistant BMPCs. Carfilzomib-resistant BMPCs displayed reduced sensitivity to the proteasome inhibitors carfilzomib, bortezomib, and ixazomib, but enhanced sensitivity to an immunoproteasome-specific inhibitor ONX-0914. Finally, in vitro carfilzomib treatment of BMPCs from HLA-sensitized patients increased levels of the immunoproteasome ß5i (PSMB8) catalytic subunit suggesting that carfilzomib therapy directly induces an adaptive immunoproteasome response. Taken together, our results indicate that carfilzomib induces structural changes in proteasomes and immunoproteasome formation.


Assuntos
Medula Óssea/efeitos dos fármacos , Resistência a Medicamentos/genética , Oligopeptídeos/farmacologia , Plasmócitos/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Transcriptoma/efeitos dos fármacos , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/imunologia , Biomarcadores/metabolismo , Western Blotting , Medula Óssea/imunologia , Humanos , Plasmócitos/imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Sindecana-1/metabolismo , Transcriptoma/imunologia , Pesquisa Translacional Biomédica , Regulação para Cima
3.
J Neuroinflammation ; 17(1): 301, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33054763

RESUMO

BACKGROUND: Polyamine catabolism plays a key role in maintaining intracellular polyamine pools, yet its physiological significance is largely unexplored. Here, we report that the disruption of polyamine catabolism leads to severe cerebellar damage and ataxia, demonstrating the fundamental role of polyamine catabolism in the maintenance of cerebellar function and integrity. METHODS: Mice with simultaneous deletion of the two principal polyamine catabolic enzymes, spermine oxidase and spermidine/spermine N1-acetyltransferase (Smox/Sat1-dKO), were generated by the crossbreeding of Smox-KO (Smox-/-) and Sat1-KO (Sat1-/-) animals. Development and progression of tissue injury was monitored using imaging, behavioral, and molecular analyses. RESULTS: Smox/Sat1-dKO mice are normal at birth, but develop progressive cerebellar damage and ataxia. The cerebellar injury in Smox/Sat1-dKO mice is associated with Purkinje cell loss and gliosis, leading to neuroinflammation and white matter demyelination during the latter stages of the injury. The onset of tissue damage in Smox/Sat1-dKO mice is not solely dependent on changes in polyamine levels as cerebellar injury was highly selective. RNA-seq analysis and confirmatory studies revealed clear decreases in the expression of Purkinje cell-associated proteins and significant increases in the expression of transglutaminases and markers of neurodegenerative microgliosis and astrocytosis. Further, the α-Synuclein expression, aggregation, and polyamination levels were significantly increased in the cerebellum of Smox/Sat1-dKO mice. Finally, there were clear roles of transglutaminase-2 (TGM2) in the cerebellar pathologies manifest in Smox/Sat1-dKO mice, as pharmacological inhibition of transglutaminases reduced the severity of ataxia and cerebellar injury in Smox/Sat1-dKO mice. CONCLUSIONS: These results indicate that the disruption of polyamine catabolism, via coordinated alterations in tissue polyamine levels, elevated transglutaminase activity and increased expression, polyamination, and aggregation of α-Synuclein, leads to severe cerebellar damage and ataxia. These studies indicate that polyamine catabolism is necessary to Purkinje cell survival, and for sustaining the functional integrity of the cerebellum.


Assuntos
Acetiltransferases/deficiência , Ataxia/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/deficiência , Células de Purkinje/enzimologia , Acetiltransferases/genética , Animais , Apoptose/fisiologia , Ataxia/genética , Ataxia/patologia , Cerebelo/enzimologia , Cerebelo/patologia , Inflamação/enzimologia , Inflamação/genética , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Células de Purkinje/patologia , Poliamina Oxidase
4.
Am J Respir Cell Mol Biol ; 60(1): 106-116, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30134121

RESUMO

Patients with pulmonary arterial hypertension (PAH) can harbor mutations in several genes, most commonly in BMPR2. However, disease penetrance in patients with BMPR2 mutations is low. In addition, most patients do not carry known PAH gene mutations, suggesting that other factors determine susceptibility to PAH. To begin to identify additional genomic factors contributing to PAH pathogenesis, we exposed 32 mouse strains to chronic hypoxia. We found that the PL/J strain has extremely high right ventricular systolic pressure (RVSP; 86.58 mm Hg) but minimal lung remodeling. To identify potential genomic factors contributing to the high RVSP, RNAseq analysis of PL/J lung mRNAs and microRNAs (miRNAs) after hypoxia was performed, and it demonstrated that 4 of 43 upregulated miRNAs in the Dlk1-Dio3 imprinting region are predicted to target T cell marker mRNAs. These target mRNAs, as well as the numbers of T cells were downregulated. In addition, C5a and its receptor, C5AR1, were increased. Analysis of Rho-associated protein kinase (Rock) 2 mRNA expression, in the RhoA/Rock pathway, demonstrated a significant increase in PL/J. Inhibition of Rock2 ameliorated a portion of the elevated RVSP. In addition, we identified miR-150-5p as a potential regulator of Rock2 expression. In conclusion, we identified two possible pathways contributing to the hypoxia pulmonary hypertension phenotype of extreme RVSP elevation: aberrant T cell expression driven by hypoxia-induced miRNAs and increased expression of C5a and C5AR1. We suggest that the PL/J mouse will be a good model for seeking mechanism(s) of RVSP elevation in hypoxia-induced PAH.


Assuntos
Biomarcadores/análise , Regulação da Expressão Gênica , Hipertensão Pulmonar/etiologia , Hipóxia/complicações , MicroRNAs/genética , Transcriptoma , Animais , Perfilação da Expressão Gênica , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Masculino , Camundongos , Transdução de Sinais
5.
Hum Mol Genet ; 25(23): 5126-5141, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27655403

RESUMO

Neuronopathic Gaucher disease (nGD) manifests as severe neurological symptoms in patients with no effective treatment available. Ryanodine receptors (Ryrs) are a family of calcium release channels on intracellular stores. The goal of this study is to determine if Ryrs are potential targets for nGD treatment. A nGD cell model (CBE-N2a) was created by inhibiting acid ß-glucosidase (GCase) in N2a cells with conduritol B epoxide (CBE). Enhanced cytosolic calcium in CBE-N2a cells was blocked by either ryanodine or dantrolene, antagonists of Ryrs and by Genz-161, a glucosylceramide synthase inhibitor, suggesting substrate-mediated ER-calcium efflux occurs through ryanodine receptors. In the brain of a nGD (4L;C*) mouse model, expression of Ryrs was normal at 13 days of age, but significantly decreased below the wild type level in end-stage 4L;C* brains at 40 days. Treatment with dantrolene in 4L;C* mice starting at postnatal day 5 delayed neurological pathology and prolonged survival. Compared to untreated 4L;C* mice, dantrolene treatment significantly improved gait, reduced LC3-II levels, improved mitochondrial ATP production and reduced inflammation in the brain. Dantrolene treatment partially normalized Ryr expression and its potential regulators, CAMK IV and calmodulin. Furthermore, dantrolene treatment increased residual mutant GCase activity in 4L;C* brains. These data demonstrate that modulating Ryrs has neuroprotective effects in nGD through mechanisms that protect the mitochondria, autophagy, Ryr expression and enhance GCase activity. This study suggests that calcium signalling stabilization, e.g. with dantrolene, could be a potential disease modifying therapy for nGD.


Assuntos
Dantroleno/administração & dosagem , Doença de Gaucher/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Animais , Sinalização do Cálcio/genética , Modelos Animais de Doenças , Doença de Gaucher/genética , Doença de Gaucher/fisiopatologia , Humanos , Camundongos , Mitocôndrias/genética , Mitocôndrias/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/administração & dosagem , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
6.
Hum Mol Genet ; 24(24): 7031-48, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26420838

RESUMO

Defective lysosomal acid ß-glucosidase (GCase) in Gaucher disease causes accumulation of glucosylceramide (GC) and glucosylsphingosine (GS) that distress cellular functions. To study novel pathological mechanisms in neuronopathic Gaucher disease (nGD), a mouse model (4L;C*), an analogue to subacute human nGD, was investigated for global profiles of differentially expressed brain mRNAs (DEGs) and miRNAs (DEmiRs). 4L;C* mice displayed accumulation of GC and GS, activated microglial cells, reduced number of neurons and aberrant mitochondrial function in the brain followed by deterioration in motor function. DEGs and DEmiRs were characterized from sequencing of mRNA and miRNA from cerebral cortex, brain stem, midbrain and cerebellum of 4L;C* mice. Gene ontology enrichment and pathway analysis showed preferential mitochondrial dysfunction in midbrain and uniform inflammatory response and identified novel pathways, axonal guidance signaling, synaptic transmission, eIF2 and mammalian target of rapamycin (mTOR) signaling potentially involved in nGD. Similar analyses were performed with mice treated with isofagomine (IFG), a pharmacologic chaperone for GCase. IFG treatment did not alter the GS and GC accumulation significantly but attenuated the progression of the disease and altered numerous DEmiRs and target DEGs to their respective normal levels in inflammation, mitochondrial function and axonal guidance pathways, suggesting its regulation on miRNA and the associated mRNA that underlie the neurodegeneration in nGD. These analyses demonstrate that the neurodegenerative phenotype in 4L;C* mice was associated with dysregulation of brain mRNAs and miRNAs in axonal guidance, synaptic plasticity, mitochondria function, eIF2 and mTOR signaling and inflammation and provides new insights for the nGD pathological mechanism.


Assuntos
Encéfalo/metabolismo , Doença de Gaucher/genética , Imino Piranoses/uso terapêutico , MicroRNAs/metabolismo , Chaperonas Moleculares/uso terapêutico , RNA Mensageiro/metabolismo , Animais , Axônios/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Encefalite/metabolismo , Encefalite/patologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/metabolismo , Doença de Gaucher/patologia , Perfilação da Expressão Gênica , Glucosilceramidas/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Neuroglia/patologia , Neurônios/patologia , Fenótipo , Psicosina/análogos & derivados , Psicosina/metabolismo , Transdução de Sinais , Transmissão Sináptica , Serina-Treonina Quinases TOR/metabolismo
7.
Blood ; 125(16): 2544-52, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25740828

RESUMO

Leukemias with MLL translocations are often found in infants and are associated with poor outcomes. The pathogenesis of MLL-fusion leukemias has been linked to upregulation of HOX/MEIS1 genes. The functions of the Hox/Meis1 complex in leukemia, however, remain elusive. Here, we used inducible Meis1-knockout mice coupled with MLL-AF9 knockin mice to decipher the mechanistic role of Meis1 in established MLL leukemia. We demonstrate that Meis1 is essential for maintenance of established leukemia. In addition, in both the murine model and human leukemia cells, we found that Meis1 loss led to increased oxidative stress, oxygen flux, and apoptosis. Gene expression and chromatin immunoprecipitation studies revealed hepatic leukemia factor (HLF) as a target gene of Meis1. Hypoxia or HLF expression reversed the oxidative stress, rescuing leukemia development in Meis1-deficient cells. Thus, the leukemia-promoting properties of Meis1 are at least partly mediated by a low-oxidative state, aided by HLF. These results suggest that stimulants of oxidative metabolism could have therapeutic potential in leukemia treatment.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Homeodomínio/metabolismo , Leucemia/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Estresse Oxidativo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Western Blotting , Hipóxia Celular , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Ácido Dicloroacético/farmacologia , Regulação Leucêmica da Expressão Gênica , Células HEK293 , Proteínas de Homeodomínio/genética , Humanos , Leucemia/genética , Leucemia/patologia , Camundongos Knockout , Camundongos Transgênicos , Proteína Meis1 , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Fusão Oncogênica/genética , Fosforilação Oxidativa/efeitos dos fármacos , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Transcriptoma
8.
Breast Cancer Res Treat ; 153(3): 507-17, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26400846

RESUMO

The presence of disseminated tumor cells (DTCs) in the bone marrow (BM) of breast cancer patients is prognostic for early relapse. In the present study, we analyzed the gene expression profiles from BM cells of breast cancer patients to identify molecular signatures associated with DTCs and their relevance to metastatic outcome. We analyzed BM from 30 patients with stage II/III breast cancer by gene expression profiling and correlated expression with metastatic disease development. A candidate gene, PITX2, was analyzed for expression and phenotype in breast cancer cell lines. PITX2 was knocked down in the MDAMB231 cell lines for gene expression analysis and cell invasiveness. Expression of various signaling pathway molecules was confirmed by RT-PCR. We found that the expression of Paired-like Homeobox Transcription factor-2 (PITX2) is absent in the BM of normal healthy volunteers and, when detected in the BM of breast cancer patients, is significantly correlated with early metastatic disease development (p = 0.0062). Suppression of PITX2 expression significantly reduced invasiveness in MDAMB231 cells. Three genes-NKD1, LEF1, and DKK4-were significantly downregulated in response to PITX2 suppression. Expression of PITX2 in BM of early-stage breast cancer patients is associated with risk for early disease recurrence. Furthermore, PITX2 likely plays a role in the metastatic process through its effect on the expression of genes associated with the Wnt/beta-Catenin signaling pathway.


Assuntos
Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Expressão Gênica , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Biomarcadores Tumorais , Medula Óssea/metabolismo , Medula Óssea/patologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/metabolismo , Humanos , Invasividade Neoplásica , Recidiva Local de Neoplasia , Estadiamento de Neoplasias , Proteínas Nucleares , Fenótipo , Fatores de Transcrição/metabolismo , Proteína 1 Relacionada a Twist , Proteína Homeobox PITX2
9.
Sci Adv ; 7(7)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33568479

RESUMO

The lipogenic enzyme stearoyl CoA desaturase (SCD) plays a key role in tumor lipid metabolism and membrane architecture. SCD is often up-regulated and a therapeutic target in cancer. Here, we report the unexpected finding that median expression of SCD is low in glioblastoma relative to normal brain due to hypermethylation and unintentional monoallelic co-deletion with phosphatase and tensin homolog (PTEN) in a subset of patients. Cell lines from this subset expressed undetectable SCD, yet retained residual SCD enzymatic activity. Unexpectedly, these lines evolved to survive independent of SCD through unknown mechanisms. Cell lines that escaped such genetic and epigenetic alterations expressed higher levels of SCD and were highly dependent on SCD for survival. Last, we identify that SCD-dependent lines acquire resistance through a previously unknown FBJ murine osteosarcoma viral oncogene homolog B (FOSB)-mediated mechanism. Accordingly, FOSB inhibition blunted acquired resistance and extended survival of tumor-bearing mice treated with SCD inhibitor.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias , Estearoil-CoA Dessaturase , Animais , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Metabolismo dos Lipídeos , Lipogênese , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Estearoil-CoA Dessaturase/antagonistas & inibidores , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo
10.
Curr Biol ; 17(22): 1954-9, 2007 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-17980592

RESUMO

Hypoxic preconditioning (HP) is a rapid and reversible proadaptive response to mild hypoxic exposure with such a response protecting cells from subsequent hypoxic or ischemic insult. HP mechanisms are of great interest because of their therapeutic potential and insight into metabolic adaptation and cell death. HP has been widely demonstrated in the vertebrate subphylum but not in invertebrates. Here, we report that the nematode Caenorhabditis elegans has a potent HP mechanism that protects the organism as well as its neurons and myocytes from hypoxic injury. The time course of C. elegans HP was consistent with vertebrate-delayed HP, appearing 16 hr after preconditioning and lasting at least 36 hr. The apoptosis pathway has been proposed as either a trigger or target of HP. Testing of mutations in the canonical C. elegans apoptosis pathway showed that in general, genes in this pathway are not required for HP. However, loss-of-function mutations in ced-4, which encodes an Apaf-1 homolog, completely blocked HP. RNAi silencing of ced-4 in adult animals immediately preceding preconditioning blocked HP, indicating that CED-4 is required in adults during or after preconditioning. CED-4/Apaf-1 is essential for HP in C. elegans and acts through a mechanism independent of the classical apoptosis pathway.


Assuntos
Apoptose/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/metabolismo , Proteínas de Ligação ao Cálcio/fisiologia , Hipóxia/metabolismo , Precondicionamento Isquêmico , Oxigênio/fisiologia , Animais , Precondicionamento Isquêmico/métodos
11.
Biol Open ; 8(2)2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30670377

RESUMO

Hepatic fibrosis is the common end stage to a variety of chronic liver injuries and is characterized by an excessive deposition of extracellular matrix (ECM), which disrupts the liver architecture and impairs liver function. The fibrous lesions are produced by myofibroblasts, which differentiate from hepatic stellate cells (HSC). The myofibroblast's transcriptional networks remain poorly characterized. Previous studies have shown that the Forkhead box F1 (FOXF1) transcription factor is expressed in HSCs and stimulates their activation during acute liver injury; however, the role of FOXF1 in the progression of hepatic fibrosis is unknown. In the present study, we generated αSMACreER;Foxf1fl/fl mice to conditionally inactivate Foxf1 in myofibroblasts during carbon tetrachloride-mediated liver fibrosis. Foxf1 deletion increased collagen depositions and disrupted liver architecture. Timp2 expression was significantly increased in Foxf1-deficient mice while MMP9 activity was reduced. RNA sequencing of purified liver myofibroblasts demonstrated that FOXF1 inhibits expression of pro-fibrotic genes, Col1α2, Col5α2, and Mmp2 in fibrotic livers and binds to active repressors located in promotors and introns of these genes. Overexpression of FOXF1 inhibits Col1a2, Col5a2, and MMP2 in primary murine HSCs in vitro Altogether, FOXF1 prevents aberrant ECM depositions during hepatic fibrosis by repressing pro-fibrotic gene transcription in myofibroblasts and HSCs.

12.
Front Pharmacol ; 9: 318, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29695963

RESUMO

Aim: Tafazzin knockdown (TazKD) in mice is widely used to create an experimental model of Barth syndrome (BTHS) that exhibits dilated cardiomyopathy and impaired exercise capacity. Peroxisome proliferator-activated receptors (PPARs) are a group of nuclear receptor proteins that play essential roles as transcription factors in the regulation of carbohydrate, lipid, and protein metabolism. We hypothesized that the activation of PPAR signaling with PPAR agonist bezafibrate (BF) may ameliorate impaired cardiac and skeletal muscle function in TazKD mice. This study examined the effects of BF on cardiac function, exercise capacity, and metabolic status in the heart of TazKD mice. Additionally, we elucidated the impact of PPAR activation on molecular pathways in TazKD hearts. Methods: BF (0.05% w/w) was given to TazKD mice with rodent chow. Cardiac function in wild type-, TazKD-, and BF-treated TazKD mice was evaluated by echocardiography. Exercise capacity was evaluated by exercising mice on the treadmill until exhaustion. The impact of BF on metabolic pathways was evaluated by analyzing the total transcriptome of the heart by RNA sequencing. Results: The uptake of BF during a 4-month period at a clinically relevant dose effectively protected the cardiac left ventricular systolic function in TazKD mice. BF alone did not improve the exercise capacity however, in combination with everyday voluntary running on the running wheel BF significantly ameliorated the impaired exercise capacity in TazKD mice. Analysis of cardiac transcriptome revealed that BF upregulated PPAR downstream target genes involved in a wide spectrum of metabolic (energy and protein) pathways as well as chromatin modification and RNA processing. In addition, the Ostn gene, which encodes the metabolic hormone musclin, is highly induced in TazKD myocardium and human failing hearts, likely as a compensatory response to diminished bioenergetic homeostasis in cardiomyocytes. Conclusion: The PPAR agonist BF at a clinically relevant dose has the therapeutic potential to attenuate cardiac dysfunction, and possibly exercise intolerance in BTHS. The role of musclin in the failing heart should be further investigated.

13.
Nat Cell Biol ; 20(10): 1228, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30089841

RESUMO

In the version of this Article originally published, the competing interests statement was missing. The authors declare no competing interests; this statement has now been added in all online versions of the Article.

14.
Nat Cell Biol ; 20(7): 823-835, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29915361

RESUMO

Stress is integral to tumour evolution, and cancer cell survival depends on stress management. We found that cancer-associated stress chronically activates the bioenergetic sensor AMP kinase (AMPK) and, to survive, tumour cells hijack an AMPK-regulated stress response pathway conserved in normal cells. Analysis of The Cancer Genome Atlas data revealed that AMPK isoforms are highly expressed in the lethal human cancer glioblastoma (GBM). We show that AMPK inhibition reduces viability of patient-derived GBM stem cells (GSCs) and tumours. In stressed (exercised) skeletal muscle, AMPK is activated to cooperate with CREB1 (cAMP response element binding protein-1) and promote glucose metabolism. We demonstrate that oncogenic stress chronically activates AMPK in GSCs that coopt the AMPK-CREB1 pathway to coordinate tumour bioenergetics through the transcription factors HIF1α and GABPA. Finally, we show that adult mice tolerate systemic deletion of AMPK, supporting the use of AMPK pharmacological inhibitors in the treatment of GBM.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Neoplasias Encefálicas/enzimologia , Proliferação de Células , Metabolismo Energético , Glioblastoma/enzimologia , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Animais , Antineoplásicos/farmacologia , Apoptose , Autofagia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Metabolismo Energético/efeitos dos fármacos , Feminino , Fator de Transcrição de Proteínas de Ligação GA/genética , Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Células HEK293 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/enzimologia , Células-Tronco Neoplásicas/patologia , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Fatores de Tempo , Transcrição Gênica , Carga Tumoral , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Nat Cell Biol ; 20(11): 1328, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30190576

RESUMO

In the version of this Article originally published, in ref. 34 the first author's name was spelled incorrectly. The correct reference is: Rodón, L. et al. Active CREB1 promotes a malignant TGFß2 autocrine loop in glioblastoma. Cancer Discov. 10, 1230-1241 (2014). This has now been amended in all online versions of the Article.

16.
Anesthesiology ; 107(6): 971-82, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18043066

RESUMO

BACKGROUND: Volatile general anesthetics inhibit neurotransmitter release by an unknown mechanism. A mutation in the presynaptic soluble NSF attachment protein receptor (SNARE) protein syntaxin 1A was previously shown to antagonize the anesthetic isoflurane in Caenorhabditis elegans. The mechanism underlying this antagonism may identify presynaptic anesthetic targets relevant to human anesthesia. METHODS: Sensitivity to isoflurane concentrations in the human clinical range was measured in locomotion assays on adult C. elegans. Sensitivity to the acetylcholinesterase inhibitor aldicarb was used as an assay for the global level of C. elegans neurotransmitter release. Comparisons of isoflurane sensitivity (measured by the EC50) were made by simultaneous curve fitting and F test as described by Waud. RESULTS: Expression of a truncated syntaxin fragment (residues 1-106) antagonized isoflurane sensitivity in C. elegans. This portion of syntaxin interacts with the presynaptic protein UNC-13, suggesting the hypothesis that truncated syntaxin binds to UNC-13 and antagonizes an inhibitory effect of isoflurane on UNC-13 function. Consistent with this hypothesis, overexpression of UNC-13 suppressed the isoflurane resistance of the truncated syntaxins, and unc-13 loss-of-function mutants were highly isoflurane resistant. Normal anesthetic sensitivity was restored by full-length UNC-13, by a shortened form of UNC-13 lacking a C2 domain, but not by a membrane-targeted UNC-13 that might bypass isoflurane inhibition of membrane translocation of UNC-13. Isoflurane was found to inhibit synaptic localization of UNC-13. CONCLUSIONS: These data show that UNC-13, an evolutionarily conserved protein that promotes neurotransmitter release, is necessary for isoflurane sensitivity in C. elegans and suggest that its vertebrate homologs may be a component of the general anesthetic mechanism.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Evolução Molecular , Isoflurano/farmacologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/fisiologia , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte , Relação Dose-Resposta a Droga , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas Qa-SNARE/fisiologia , Deleção de Sequência , Especificidade da Espécie
17.
Front Genet ; 5: 35, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24600473

RESUMO

Interpreting gene expression profiles often involves statistical analysis of large numbers of differentially expressed genes, isoforms, and alternative splicing events at either static or dynamic spectrums. Reduced sequencing costs have made feasible dense time-series analysis of gene expression using RNA-seq; however, statistical methods in the context of temporal RNA-seq data are poorly developed. Here we will review current methods for identifying temporal changes in gene expression using RNA-seq, which are limited to static pairwise comparisons of time points and which fail to account for temporal dependencies in gene expression patterns. We also review recently developed very few number of temporal dynamic RNA-seq specific methods. Application and development of RNA-specific temporal dynamic methods have been continuously under the development, yet, it is still in infancy. We fully cover microarray specific temporal methods and transcriptome studies in initial digital technology (e.g., SAGE) between traditional microarray and new RNA-seq.

18.
PLoS One ; 8(10): e74912, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24124461

RESUMO

Gaucher disease type 1, an inherited lysosomal storage disorder, is caused by mutations in GBA1 leading to defective glucocerebrosidase (GCase) function and consequent excess accumulation of glucosylceramide/glucosylsphingosine in visceral organs. Enzyme replacement therapy (ERT) with the biosimilars, imiglucerase (imig) or velaglucerase alfa (vela) improves/reverses the visceral disease. Comparative transcriptomic effects (microarray and mRNA-Seq) of no ERT and ERT (imig or vela) were done with liver, lung, and spleen from mice having Gba1 mutant alleles, termed D409V/null. Disease-related molecular effects, dynamic ranges, and sensitivities were compared between mRNA-Seq and microarrays and their respective analytic tools, i.e. Mixed Model ANOVA (microarray), and DESeq and edgeR (mRNA-Seq). While similar gene expression patterns were observed with both platforms, mRNA-Seq identified more differentially expressed genes (DEGs) (∼3-fold) than the microarrays. Among the three analytic tools, DESeq identified the maximum number of DEGs for all tissues and treatments. DESeq and edgeR comparisons revealed differences in DEGs identified. In 9V/null liver, spleen and lung, post-therapy transcriptomes approximated WT, were partially reverted, and had little change, respectively, and were concordant with the corresponding histological and biochemical findings. DEG overlaps were only 8-20% between mRNA-Seq and microarray, but the biological pathways were similar. Cell growth and proliferation, cell cycle, heme metabolism, and mitochondrial dysfunction were most altered with the Gaucher disease process. Imig and vela differentially affected specific disease pathways. Differential molecular responses were observed in direct transcriptome comparisons from imig- and vela-treated tissues. These results provide cross-validation for the mRNA-Seq and microarray platforms, and show differences between the molecular effects of two highly structurally similar ERT biopharmaceuticals.


Assuntos
Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Glucosilceramidase/uso terapêutico , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA Mensageiro/genética , Transcriptoma/genética , Animais , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Camundongos , Transcriptoma/efeitos dos fármacos
19.
PLoS One ; 8(3): e57560, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23520473

RESUMO

Gaucher disease results from GBA1 mutations that lead to defective acid ß-glucosidase (GCase) mediated cleavage of glucosylceramide (GC) and glucosylsphingosine as well as heterogeneous manifestations in the viscera and CNS. The mutation, tissue, and age-dependent accumulations of different GC species were characterized in mice with Gba1 missense mutations alone or in combination with isolated saposin C deficiency (C*). Gba1 heteroallelism for D409V and null alleles (9V/null) led to GC excesses primarily in the visceral tissues with preferential accumulations of lung GC24∶0, but not in liver, spleen, or brain. Age-dependent increases of different GC species were observed. The combined saposin C deficiency (C*) with V394L homozygosity (4L;C*) showed major GC18:0 degradation defects in the brain, whereas the analogous mice with D409H homozygosity and C* (9H;C*) led to all GC species accumulating in visceral tissues. Glucosylsphingosine was poorly degraded in brain by V394L and D409H GCases and in visceral tissues by D409V GCase. The neonatal lethal N370S/N370S genotype had insignificant substrate accumulations in any tissue. These results demonstrate age, organ, and mutation-specific quantitative differences in GC species and glucosylsphingosine accumulations that can have influence in the tissue/regional expression of Gaucher disease phenotypes.


Assuntos
Envelhecimento/metabolismo , Encéfalo/enzimologia , Doença de Gaucher/enzimologia , Glucosilceramidase/metabolismo , Glucosilceramidas/metabolismo , Mutação de Sentido Incorreto , Psicosina/análogos & derivados , Envelhecimento/genética , Envelhecimento/patologia , Substituição de Aminoácidos , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Doença de Gaucher/genética , Doença de Gaucher/patologia , Glucosilceramidase/genética , Glucosilceramidas/genética , Humanos , Camundongos , Camundongos Mutantes , Especificidade de Órgãos/genética , Psicosina/genética , Psicosina/metabolismo , Saposinas/genética , Saposinas/metabolismo
20.
PLoS One ; 7(2): e30701, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22383970

RESUMO

BACKGROUND: Lysosomal acid lipase (LAL) controls development and homeostasis of myeloid lineage cells. Loss of the lysosomal acid lipase (LAL) function leads to expansion of myeloid-derived suppressive cells (MDSCs) that cause myeloproliferative neoplasm. METHODOLOGY/PRINCIPAL FINDINGS: Affymetrix GeneChip microarray analysis identified detailed intrinsic defects in Ly6G(+) myeloid lineage cells of LAL knock-out (lal-/-) mice. Ingenuity Pathway Analysis revealed activation of the mammalian target of rapamycin (mTOR) signaling, which functions as a nutrient/energy/redox sensor, and controls cell growth, cell cycle entry, cell survival, and cell motility. Loss of the LAL function led to major alteration of large GTPase and small GTPase signal transduction pathways. lal-/- Ly6G(+) myeloid cells in the bone marrow showed substantial increase of cell proliferation in association with up-regulation of cyclin and cyclin-dependent kinase (cdk) genes. The epigenetic microenvironment was significantly changed due to the increased expression of multiple histone cluster genes, centromere protein genes and chromosome modification genes. Gene expression of bioenergetic pathways, including glycolysis, aerobic glycolysis, mitochondrial oxidative phosphorylation, and respiratory chain proteins, was also increased, while the mitochondrial function was impaired in lal-/- Ly6G(+) myeloid cells. The concentration of reactive oxygen species (ROS) was significantly increased accompanied by up-regulation of nitric oxide/ROS production genes in these cells. CONCLUSIONS/SIGNIFICANCE: This comprehensive gene profile study for the first time identifies and defines important gene pathways involved in the myeloid lineage cells towards MDSCs using lal-/- mouse model.


Assuntos
Células Mieloides/metabolismo , Esterol Esterase/genética , Animais , Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Ciclo Celular , Linhagem da Célula , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Quinases Ciclina-Dependentes/antagonistas & inibidores , Ciclinas/biossíntese , Regulação Neoplásica da Expressão Gênica , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Transtornos Mieloproliferativos/metabolismo , Neoplasias/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa