Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Org Biomol Chem ; 20(16): 3387-3396, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35362502

RESUMO

The synthetic monodisperse pentadecapeptide synSil-1A1 is a representative of the microdisperse mixture of the native silaffin natSil-1A1 produced by the diatom Cylindrotheca fusiformis. The octaphosphorylated zwitterionic synSil-1A1 is able to mineralise silica under slightly acidic conditions at pH 5.5, which is the physiologically relevant pH range assumed. Like the posttranslational modifications of the native silaffins, synSil-1A1 is functionalised on all four lysine and phosphorylated on all seven serine residues. We describe the synthesis of a trimethyl-δ-hydroxy-L-lysine building block, the incorporation of this choline-type amino acid in peptide synthesis and its phosphorylation, together with all further posttranslational modifications observed in the native silaffins. Quantitative structure-activity relationships from silicification experiments at high dilution reveal the unique mineralisation properties of the hyperphosphorylated peptide as a single substance and in interaction with long-chain polyamines (LCPA). Diffusion-ordered spectroscopy (DOSY) experiments reveal the formation of polyelectrolyte complexes (PEC) between synSil-1A1 and long-chain polyamines, which promotes the silicification process. The microdroplets have an overall balanced ratio of 100-150 cationic and the same number of anionic charges. The unique zwitterionic synSil-1A1 confirms the prevailing molecular model of biosilicification and validates it with quantitative data based on a single phosphopeptide species, avoiding the usual unphysiologically high concentrations of phosphate of many previous in vitro silicification experiments.


Assuntos
Diatomáceas , Dióxido de Silício , Diatomáceas/química , Diatomáceas/metabolismo , Peptídeos/química , Poliaminas , Dióxido de Silício/química
2.
Langmuir ; 36(16): 4332-4338, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32233513

RESUMO

Biosilica is a biogenic composite material produced by organisms like diatoms. Various biomolecules are tightly attached or incorporated into biosilica. Examples are special proteins termed silaffins and long-chain polyamines (LCPAs). Presumably, these biomolecules are involved in the biosilica formation process. Silaffins are highly phosphorylated zwitterions with LCPAs post-translationally attached to lysine residues. In the present work, we use distance-dependent solid-state NMR experiments, especially the 31P{29Si} Rotational Echo Double Resonance (REDOR) technique, to study the environment of phosphate moieties in biosilica and in vitro synthesized SiO2-based composites. In contrast to the heterogeneous mixtures of biomolecules found in native biosilica, the described in vitro silicification experiments make use of a single synthetic phosphopeptide and an LCPA of well-defined and uniform structure. The heteronuclear correlations measured from these silica composites provide reliable 31P-29Si dipolar second moments and information about the distribution of the phosphopeptide within the silica material. The calculated second moment indicates close contact between phosphopeptides and silica. The phosphopeptides are incorporated into the silica composite in a disperse manner. Moreover, the REDOR data acquired for diatom biosilica also imply that phosphate groups are part of the silica-organic interface in this material.

3.
Langmuir ; 36(39): 11600-11609, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32924496

RESUMO

The investigation of molecular interactions between silica phases and organic components is crucial for elucidating the main steps involved in the biosilica mineralization process. In this respect, the structural characterization of the organic/inorganic interface is particularly useful for a deeper understanding of the dominant mechanisms of biomineralization. In this work, we have investigated the interaction of selectively 13C- and 15N-labeled atoms of organic long-chain polyamines (LCPAs) with 29Si-labeled atoms of a silica layer at the molecular level. In particular, silica/LCPA nanocomposites were analyzed by solid-state NMR spectroscopy in combination with all-atom molecular dynamics simulations. Solid-state NMR experiments allow the determination of 29Si-15N and 29Si-13C internuclear distances, providing the parameters for direct verification of atomistic simulations. Our results elucidate the relevant molecular conformations as well as the nature of the interaction between the LCPA and a silica substrate. Specifically, distances and second moments suggest a picture compatible with (i) LCPA completely embedded in the silica phase and (ii) the charged amino groups located in close vicinity of silanol groups.

4.
Org Biomol Chem ; 18(4): 700-706, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31907503

RESUMO

We investigated the silicification activity of hyperphosphorylated peptides in combination with long-chain polyamines (LCPA). The bioinspired in vitro silicification experiments with peptides containing different amounts of phosphorylated serines showed structure-activity dependence by altering the amount and morphology of the silica precipitate. Our study provides an explanation for the considerable metabolic role of diatoms in the synthesis of hyperphosphorylated poly-cationic peptides such as natSil-1A1. The efficient late-stage phosphorylation of peptides yielded a synthetic heptaphosphopeptide whose silicification properties resemble those of natSil-1A1. As opposed to this, unphosphorylated poly-cationic peptides or LCPA require concentrations above 1 mM for silicification. Hyperphosphorylated peptides showed a linear dependence between the amount of dissolved peptides and the amount of precipitated silica in the concentration range below 1 mM. Under mildly acidic conditions and short precipitation times, the concentration of the added LCPA determined the size of the silica spheres.

5.
Langmuir ; 32(39): 10144-10152, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27603681

RESUMO

Long-chain polyamines (LCPAs) are intimately involved in the biomineralization process of diatoms taking place in silica deposition vesicles being acidic compartments surrounded by a lipid bilayer. Here, we addressed the question whether and how LCPAs interact with lipid membranes composed of glycerophospholipids and glyceroglycolipids mimicking the membranes of diatoms and higher plants. Solid supported lipid bilayers and monolayers containing the three major components that are unique in diatoms and higher plants, i.e., monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and sulfoquinovosyldiacylglycerol (SQDG), were prepared by spreading small unilamellar vesicles. The integrity of the membranes was investigated by fluorescence microscopy and atomic force microscopy showing continuous flat bilayers and monolayers with small protrusions on top of the membrane. The addition of a synthetic polyamine composed of 13 amine groups separated by a propyl spacer (C3N13) results in flat but three-dimensional membrane stacks within minutes. The membrane stacks are connected with the underlying membrane as verified by fluorescence recovery after photobleaching experiments. Membrane stack formation was found to be independent of the lipid composition; i.e., neither glyceroglycolipids nor negatively charged lipids were required. However, the formation process was strongly dependent on the chain length of the polyamine. Whereas short polyamines such as the naturally occurring spermidine, spermine, and the synthetic polyamines C3N4 and C3N5 do not induce stack formation, those containing seven and more amine groups (C3N7, C3N13, and C3N18) do form membrane stacks. The observed stack formation might have implications for the stability and expansion of the silica deposition vesicle during valve and girdle band formation in diatoms.


Assuntos
Bicamadas Lipídicas/química , Poliaminas/química , Diatomáceas , Diglicerídeos/química , Recuperação de Fluorescência Após Fotodegradação , Galactolipídeos/química , Microscopia de Força Atômica , Microscopia de Fluorescência , Estrutura Molecular , Poliaminas/síntese química
6.
Adv Sci (Weinh) ; : e2401239, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874418

RESUMO

Deciphering nature's remarkable way of encoding functions in its biominerals holds the potential to enable the rational development of nature-inspired materials with tailored properties. However, the complex processes that convert solution-state precursors into solid biomaterials remain largely unknown. In this study, an unconventional approach is presented to characterize these precursors for the diatom-derived peptides R5 and synthetic Silaffin-1A1 (synSil-1A1). These molecules can form defined supramolecular assemblies in solution, which act as templates for solid silica structures. Using a tailored structural biology toolbox, the structure-function relationships of these self-assemblies are unveiled. NMR-derived constraints are employed to enable a recently developed fractal-cluster formalism and then reveal the architecture of the peptide assemblies in atomistic detail. Finally, by monitoring the self-assembly activities during silica formation at simultaneous high temporal and residue resolution using real-time spectroscopy, the mechanism is elucidated underlying template-driven silica formation. Thus, it is demonstrated how to exercise morphology control over bioinorganic solids by manipulating the template architectures. It is found that the morphology of the templates is translated into the shape of bioinorganic particles via a mechanism that includes silica nucleation on the solution-state complexes' surfaces followed by complete surface coating and particle precipitation.

7.
Beilstein J Nanotechnol ; 6: 103-10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25671155

RESUMO

Biosilicification sets the standard for the localized in vitro precipitation of silica at low orthosilicate concentrations in aqueous environment under ambient conditions. Numerous parameters must be controlled for the development of new technologies in designing inventive nanosilica structures, which are able to challenge the biological templates. A long neglected requirement that came into focus in the recent years are the cellular techniques of preventing unintentional lithification of cellular structures since numerous cellular components such as membranes, DNA, and proteins are known to precipitate nanosilica. The diatom metabolism makes use of techniques that restrict silicification to an armor of silica around the cell wall while avoiding the petrifying gaze of Medusa, which turns the whole cell into stone. Step by step, biochemistry unveils the hierarchical interplay of an arsenal of low-molecular weight molecules, proteins, and the cytoskeletal architecture and it becomes clearer why the organisms invest much metabolic effort for an obviously simple chemical reaction like the precipitation of amorphous silica. The discrimination between different soluble components in the silicification process (chemoselective silicification) is not only vitally important for the diatom but poses an interesting challenge for in vitro experiments. Until now, silica precipitation studies were mainly focused on the amount, the morphology, and composition of the precipitate while disregarding a quantitative analysis of the remaining soluble components. Here, we turn the tables and quantify the soluble components by (1)H NMR in the progress of precipitation and present experiments which quantify the additivity, and potential cooperativity of long chain polyamines (LCPAs) and cationic peptides in the silicification process.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa