Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
2.
Mycorrhiza ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816524

RESUMO

The introduction of Reduced height (Rht) dwarfing genes into elite wheat varieties has contributed to enhanced yield gain in high input agrosystems by preventing lodging. Yet, how modern selection for dwarfing has affected symbiosis remains poorly documented. In this study, we evaluated the response of both the plant and the arbuscular mycorrhizal fungus to plant genetic variation at a major Quantitative Trait Locus called QTL 4B2, known to harbor a Rht dwarfing gene, when forming the symbiosis. We used twelve inbred genotypes derived from a diversity base broadened durum wheat Evolutionary Pre-breeding Population and genotyped with a high-throughput Single Nucleotide Polymorphism (SNP) genotyping array. In a microcosm setup segregating roots and the extra-radical mycelium, each wheat genotype was grown with or without the presence of Rhizophagus irregularis. To characterize arbuscular mycorrhizal symbiosis, we assessed hyphal density, root colonization, spore production, and plant biomass. Additionally, we split the variation of these variables due either to genotypes or to the Rht dwarfing genes alone. The fungus exhibited greater development in the roots of Dwarf plants compared to non-Dwarf plants, showing increases of 27%, 37% and 51% in root colonization, arbuscules, and vesicles, respectively. In addition, the biomass of the extra-radical fungal structures increased by around 31% in Dwarf plants. The biomass of plant roots decreased by about 43% in mycorrhizal Dwarf plants. Interestingly, extraradical hyphal production was found to be partly genetically determined with no significant effect of Rht, as for plant biomasses. In contrast, variations in root colonization, arbuscules and extraradical spore production were explained by Rht dwarfing genes. Finally, when mycorrhizal, Dwarf plants had significantly lower total P content, pointing towards a less beneficial symbiosis for the plant and increased profit for the fungus. These results highlight the effect of Rht dwarfing genes on both root and fungal development. This calls for further research into the molecular mechanisms governing these effects, as well as changes in plant physiology, and their implications for fostering arbuscular mycorrhizal symbiosis in sustainable agrosystems.

3.
New Phytol ; 233(6): 2573-2584, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35081666

RESUMO

Agroecosystem diversification through increased crop genetic diversity could provide multiple services such as improved disease control or increased productivity. However, we still poorly understand how genetic diversity affects agronomic performance. We grew 179 inbred lines of durum wheat in pure stands and in 202 binary mixtures in field conditions. We then tested the effect of allelic richness between genotypes and genotype richness on grain yield and Septoria tritici blotch disease. Allelic richness was tested at 19K single nucleotide polymorphisms distributed along the durum wheat genome. Both genotype richness and allelic richness could be equal to 1 or 2. Mixtures were overall more productive and less diseased than their pure stand components. Yet, we identified one locus at which allelic richness between genotypes was associated with increased disease severity and decreased grain yield. The effect of allelic richness at this locus was stronger than the effect of genotype richness on grain yield (-7.6% vs +5.7%). Our results suggest that positive effects of crop diversity can be reversed by unfavourable allelic associations. This highlights the need to integrate genomic data into crop diversification strategies. More generally, investigating plant-plant interactions at the genomic level is promising to better understand biodiversity-ecosystem functioning relationships.


Assuntos
Ecossistema , Triticum , Alelos , Biodiversidade , Genótipo , Triticum/genética
4.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946478

RESUMO

Mounting evidence indicates the key role of nitrogen (N) on diverse processes in plant, including development and defense. Using a combined transcriptomics and metabolomics approach, we studied the response of seedlings to N starvation of two different tetraploid wheat genotypes from the two main domesticated subspecies: emmer and durum wheat. We found that durum wheat exhibits broader and stronger response in comparison to emmer as seen from the expression pattern of both genes and metabolites and gene enrichment analysis. They showed major differences in the responses to N starvation for transcription factor families, emmer showed differential reduction in the levels of primary metabolites while durum wheat exhibited increased levels of most of them to N starvation. The correlation-based networks, including the differentially expressed genes and metabolites, revealed tighter regulation of metabolism in durum wheat in comparison to emmer. We also found that glutamate and γ-aminobutyric acid (GABA) had highest values of centrality in the metabolic correlation network, suggesting their critical role in the genotype-specific response to N starvation of emmer and durum wheat, respectively. Moreover, this finding indicates that there might be contrasting strategies associated to GABA and glutamate signaling modulating shoot vs. root growth in the two different wheat subspecies.


Assuntos
Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Plântula/genética , Triticum/genética , Metaboloma , Plântula/metabolismo , Tetraploidia , Transcriptoma , Triticum/metabolismo
5.
PLoS Genet ; 13(5): e1006799, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28531201

RESUMO

Base composition is highly variable among and within plant genomes, especially at third codon positions, ranging from GC-poor and homogeneous species to GC-rich and highly heterogeneous ones (particularly Monocots). Consequently, synonymous codon usage is biased in most species, even when base composition is relatively homogeneous. The causes of these variations are still under debate, with three main forces being possibly involved: mutational bias, selection and GC-biased gene conversion (gBGC). So far, both selection and gBGC have been detected in some species but how their relative strength varies among and within species remains unclear. Population genetics approaches allow to jointly estimating the intensity of selection, gBGC and mutational bias. We extended a recently developed method and applied it to a large population genomic dataset based on transcriptome sequencing of 11 angiosperm species spread across the phylogeny. We found that at synonymous positions, base composition is far from mutation-drift equilibrium in most genomes and that gBGC is a widespread and stronger process than selection. gBGC could strongly contribute to base composition variation among plant species, implying that it should be taken into account in plant genome analyses, especially for GC-rich ones.


Assuntos
Evolução Molecular , Genoma de Planta , Magnoliopsida/genética , Polimorfismo Genético , Sequência Rica em GC , Conversão Gênica , Seleção Genética
6.
Plant J ; 91(4): 631-645, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28488328

RESUMO

Plant domestication has led to considerable phenotypic modifications from wild species to modern varieties. However, although changes in key traits have been well documented, less is known about the underlying molecular mechanisms, such as the reduction of molecular diversity or global gene co-expression patterns. In this study, we used a combination of gene expression and population genetics in wild and crop tomato to decipher the footprints of domestication. We found a set of 1729 differentially expressed genes (DEG) between the two genetic groups, belonging to 17 clusters of co-expressed DEG, suggesting that domestication affected not only individual genes but also regulatory networks. Five co-expression clusters were enriched in functional terms involving carbohydrate metabolism or epigenetic regulation of gene expression. We detected differences in nucleotide diversity between the crop and wild groups specific to DEG. Our study provides an extensive profiling of the rewiring of gene co-expression induced by the domestication syndrome in one of the main crop species.


Assuntos
Epigênese Genética , Variação Genética , Genoma de Planta/genética , Solanum lycopersicum/genética , Transcriptoma , Domesticação , Ontologia Genética , Genética Populacional , Fenótipo , Análise de Sequência de RNA
7.
Bioinformatics ; 33(9): 1387-1388, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28453680

RESUMO

Motivation: Marker-assisted selection strongly relies on genetic maps to accelerate breeding programs. High-density maps are now available for numerous species. Dedicated tools are required to compare several high-density maps on the basis of their key characteristics, while pinpointing their differences and similarities. Results: We developed the Genetic Map Comparator-a web-based application for easy comparison of different maps according to their key statistics and the relative positions of common markers. Availability and Implementation: The Genetic Map Comparator is available online at: http://bioweb.supagro.inra.fr/geneticMapComparator. The source code is freely available on GitHub under the under the CeCILL general public license: https://github.com/holtzy/GenMap-Comparator. Contact: Holtz@supagro.fr; Ranwez@supagro.fr.


Assuntos
Genômica/métodos , Análise de Sequência de DNA/métodos , Software , Resistência à Doença/genética , Genes de Plantas , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Triticum/virologia , Viroses/genética
8.
Trends Genet ; 30(7): 263-70, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24916172

RESUMO

In angiosperms (as in other species), GC content varies along and between genes, within a genome, and between genomes of different species, but the reason for this distribution is still an open question. Grass genomes are particularly intriguing because they exhibit a strong bimodal distribution of genic GC content and a sharp 5'-3' decreasing GC content gradient along most genes. Here, we propose a unifying model to explain the main patterns of GC content variation at the gene and genome scale. We argue that GC content patterns could be mainly determined by the interactions between gene structure, recombination patterns, and GC-biased gene conversion. Recent studies on fine-scale recombination maps in angiosperms support this hypothesis and previous results also fit this model. We propose that our model could be used as a null hypothesis to search for additional forces that affect GC content in angiosperms.


Assuntos
Composição de Bases , Evolução Molecular , Genoma de Planta , Magnoliopsida/genética , Fases de Leitura Aberta , Metilação de DNA , Magnoliopsida/metabolismo , Nucleossomos/metabolismo , Recombinação Genética
9.
Theor Appl Genet ; 130(7): 1491-1505, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28451771

RESUMO

KEY MESSAGE: The resistance of durum wheat to the Wheat spindle streak mosaic virus (WSSMV) is controlled by two main QTLs on chromosomes 7A and 7B, with a huge epistatic effect. Wheat spindle streak mosaic virus (WSSMV) is a major disease of durum wheat in Europe and North America. Breeding WSSMV-resistant cultivars is currently the only way to control the virus since no treatment is available. This paper reports studies of the inheritance of WSSMV resistance using two related durum wheat populations obtained by crossing two elite cultivars with a WSSMV-resistant emmer cultivar. In 2012 and 2015, 354 recombinant inbred lines (RIL) were phenotyped using visual notations, ELISA and qPCR and genotyped using locus targeted capture and sequencing. This allowed us to build a consensus genetic map of 8568 markers and identify three chromosomal regions involved in WSSMV resistance. Two major regions (located on chromosomes 7A and 7B) jointly explain, on the basis of epistatic interactions, up to 43% of the phenotypic variation. Flanking sequences of our genetic markers are provided to facilitate future marker-assisted selection of WSSMV-resistant cultivars.


Assuntos
Resistência à Doença/genética , Epistasia Genética , Doenças das Plantas/genética , Potyviridae , Locos de Características Quantitativas , Triticum/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Ligação Genética , Marcadores Genéticos , Genótipo , Fenótipo , Doenças das Plantas/virologia , Triticum/virologia
10.
Plant Cell ; 24(4): 1379-97, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22492812

RESUMO

Nucleotide landscapes, which are the way base composition is distributed along a genome, strongly vary among species. The underlying causes of these variations have been much debated. Though mutational bias and selection were initially invoked, GC-biased gene conversion (gBGC), a recombination-associated process favoring the G and C over A and T bases, is increasingly recognized as a major factor. As opposed to vertebrates, evolution of GC content is less well known in plants. Most studies have focused on the GC-poor and homogeneous Arabidopsis thaliana genome and the much more GC-rich and heterogeneous rice (Oryza sativa) genome and have often been generalized as a dicot/monocot dichotomy. This vision is clearly phylogenetically biased and does not allow understanding the mechanisms involved in GC content evolution in plants. To tackle these issues, we used EST data from more than 200 species and provided the most comprehensive description of gene GC content across the seed plant phylogeny so far available. As opposed to the classically assumed dicot/monocot dichotomy, we found continuous variations in GC content from the probably ancestral GC-poor and homogeneous genomes to the more derived GC-rich and highly heterogeneous ones, with several independent enrichment episodes. Our results suggest that gBGC could play a significant role in the evolution of GC content in plant genomes.


Assuntos
Evolução Molecular , Nucleotídeos/genética , Plantas/genética , Sementes/genética , Composição de Bases/genética , Códon/genética , Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Variação Genética , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Especificidade da Espécie , Estatísticas não Paramétricas , Transcriptoma/genética
11.
J Theor Biol ; 386: 44-54, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26334476

RESUMO

Since the dawn of agriculture, humans have applied artificial selection on traits of interest, regardless of their genetic architecture. Yet, still today, most models used to study and streamline this process overlook genetic interactions. In this study, we determined the conditions in which a target genotype can be fixed when truncation selection is applied on an epistatic trait. Previous studies have shown that reciprocal sign epistasis with two fitness peaks of unequal height involves multiple equilibrium states, i.e. below one critical parameter value, such as a critical recombination rate, one genotype may be fixed, and above it, another one may be fixed. Using a haploid bi-locus model, we identified which genotype would be fixed, and how quickly, in an infinite population selected for a phenotypic trait subject to reciprocal sign epistasis with unequal peak heights, depending on two criteria: the recombination rate and percentage of selected individuals. The critical parameter values at which bistability sets in, were also calculated. These results were complemented by stochastic simulations in finite populations. Our results confirmed that, in the case of fitness under reciprocal sign epistasis, high recombination rates induce blockage at the local optimum or attainment of an equilibrium state between the two peaks. However, if linkage disequilibrium is negative in the initial population, recombination is necessary to create the most favorable genotype. Therefore, in this case, reciprocal sign epistasis favors non-null recombination rates, particularly if selection is intense.


Assuntos
Epistasia Genética , Modelos Genéticos , Recombinação Genética , Seleção Genética , Frequência do Gene , Haploidia , Melhoramento Vegetal/métodos
12.
Mol Ecol ; 23(9): 2210-27, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24684265

RESUMO

The African cultivated rice (Oryza glaberrima) was domesticated in West Africa 3000 years ago. Although less cultivated than the Asian rice (O. sativa), O. glaberrima landraces often display interesting adaptation to rustic environment (e.g. drought). Here, using RNA-seq technology, we were able to compare more than 12,000 transcripts between 9 O. glaberrima, 10 wild O. barthii and one O. meridionalis individuals. With a synonymous nucleotide diversity πs = 0.0006 per site, O. glaberrima appears as the least genetically diverse crop grass ever documented. Using approximate Bayesian computation, we estimated that O. glaberrima experienced a severe bottleneck during domestication. This demographic scenario almost fully accounts for the pattern of genetic diversity across O. glaberrima genome as we detected very few outliers regions where positive selection may have further impacted genetic diversity. Moreover, the large excess of derived nonsynonymous substitution that we detected suggests that the O. glaberrima population suffered from the 'cost of domestication'. In addition, we used this genome-scale data set to demonstrate that (i) O. barthii genetic diversity is positively correlated with recombination rate and negatively with gene density, (ii) expression level is negatively correlated with evolutionary constraint, and (iii) one region on chromosome 5 (position 4-6 Mb) exhibits a clear signature of introgression with a yet unidentified Oryza species. This work represents the first genome-wide survey of the African rice genetic diversity and paves the way for further comparison between the African and the Asian rice, notably regarding the genetics underlying domestication traits.


Assuntos
Evolução Molecular , Genética Populacional , Genoma de Planta , Poaceae/genética , Transcriptoma , Teorema de Bayes , Mapeamento Cromossômico , Produtos Agrícolas/genética , DNA de Plantas/genética , Variação Genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
13.
BMC Bioinformatics ; 14 Suppl 15: S15, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24564644

RESUMO

BACKGROUND: Using Next Generation Sequencing, SNP discovery is relatively easy on diploid species and still hampered in polyploid species by the confusion due to homeology. We develop HomeoSplitter; a fast and effective solution to split original contigs obtained by RNAseq into two homeologous sequences. It uses the differential expression of the two homeologous genes in the RNA. We verify that the new sequences are closer to the diploid progenitors of the allopolyploid species than the original contig. By remapping original reads on these new sequences, we also verify that the number of valuable detected SNPs has significantly increased. RESULTS: HomeoSplitter is a fast and effective solution to disentangle homeologous sequences based on a maximum likelihood optimization. On a benchmark set of 2,505 clusters containing homologous sequences of urartu, speltoides and durum, HomeoSplitter was efficient to build sequences closer to the diploid references and increased the number of valuable SNPs from 188 out of 1,360 SNPs detected when mapping the reads on the de novo durum assembly to 762 out of 1,620 SNPs when mapping on HomeoSplitter contigs. CONCLUSIONS: The HomeoSplitter program is freely available at http://bioweb.supagro.inra.fr/homeoSplitter/. This work provides a practical solution to the complex problem of disentangling homeologous transcripts in allo-tetraploids, which further allows an improved SNP detection.


Assuntos
Análise de Sequência de DNA , Tetraploidia , Triticum/genética , Sequência de Bases , Diploide , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único
15.
Rev Assoc Med Bras (1992) ; 69(5): e20221089, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37194795

RESUMO

OBJECTIVE: The aim of this study was to identify predictive factors for complications after percutaneous nephrolithotomy. METHODS: We prospectively analyzed patients who underwent percutaneous nephrolithotomy from June 2011 to October 2018. The association of preoperative and intraoperative factors with the presence of complications was assessed using univariate and multivariate analyses. The significance level was set at p<0.05. RESULTS: A total of 1,066 surgeries were evaluated, and the overall complication rate was 14.9%. In all, 105 (9.8%) surgeries were performed in the prone position, and 961 (90.2%) were performed in the supine position. Univariate analysis demonstrated that surgical position, upper pole puncture, surgical time, number of tracts, and Guys Stone Score were associated with complications. In multivariate analyses, prone position (odds ratio [OR] 2.10; p=0.003), surgical time ≥90 min (OR 1.76; p=0.014), upper pole puncture (OR 2.48; p<0.001), and Guys Stone Score 3 or 4 (OR 1.90; p=0.033) were independent predictive factors for complications after percutaneous nephrolithotomy. CONCLUSION: Performing percutaneous nephrolithotomy in the supine position, in under 90 min, and avoiding upper pole punctures may reduce complications during the treatment of large kidney stones.


Assuntos
Cálculos Renais , Nefrolitotomia Percutânea , Nefrostomia Percutânea , Masculino , Humanos , Nefrolitotomia Percutânea/efeitos adversos , Nefrostomia Percutânea/efeitos adversos , Resultado do Tratamento , Cálculos Renais/cirurgia , Cálculos Renais/complicações , Posicionamento do Paciente/efeitos adversos , Decúbito Ventral , Decúbito Dorsal , Estudos Retrospectivos , Complicações Pós-Operatórias/etiologia
16.
Evol Appl ; 15(6): 905-918, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35782010

RESUMO

Plant domestication can be viewed as a form of co-evolved interspecific mutualism between humans and crops for the benefit of the two partners. Here, we ask how this plant-human mutualism has, in turn, impacted beneficial interactions within crop species, between crop species, and between crops and their associated microbial partners. We focus on beneficial interactions resulting from three main mechanisms that can be promoted by manipulating genetic diversity in agrosystems: niche partitioning, facilitation, and kin selection. We show that a combination of factors has impacted either directly or indirectly plant-plant interactions during domestication and breeding, with a trend toward reduced benefits arising from niche partitioning and facilitation. Such factors include marked decrease of molecular and functional diversity of crops and other organisms present in the agroecosystem, mass selection, and increased use of chemical inputs. For example, the latter has likely contributed to the relaxation of selection pressures on nutrient-mobilizing traits such as those associated to root exudation and plant nutrient exchanges via microbial partners. In contrast, we show that beneficial interactions arising from kin selection have likely been promoted since the advent of modern breeding. We highlight several issues that need further investigation such as whether crop phenotypic plasticity has evolved and could trigger beneficial interactions in crops, and whether human-mediated selection has impacted cooperation via kin recognition. Finally, we discuss how plant breeding and agricultural practices can help promoting beneficial interactions within and between species in the context of agroecology where the mobilization of diversity and complexity of crop interactions is viewed as a keystone of agroecosystem sustainability.

17.
PLoS One ; 17(12): e0276223, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36490260

RESUMO

In ecology, an increase in genetic diversity within a community in natural ecosystems increases its productivity, while in evolutionary biology, kinship selection predicts that relatedness on social traits improves fitness. Varietal mixtures, where different genotypes are grown together, show contrasting results, especially for grain yield where both positive and negative effects of mixtures have been reported. To understand the effect of diversity on field performance, we grew 96 independent mixtures each composed with 12 durum wheat (Triticum turgidum ssp. durum Thell.) inbred lines, under two contrasting environmental conditions for water availability. Using dense genotyping, we imputed allelic frequencies and a genetic diversity index on more than 96000 loci for each mixture. We then analyzed the effect of genetic diversity on agronomic performance using a genome-wide approach. We explored the stress gradient hypothesis, which proposes that the greater the unfavourable conditions, the more beneficial the effect of diversity on mixture performance. We found that diversity on average had a negative effect on yield and its components while it was beneficial on grain weight. There was little support for the stress gradient theory. We discuss how to use genomic data to improve the assembly of varietal mixtures.


Assuntos
Ecossistema , Triticum , Triticum/genética , Locos de Características Quantitativas , Grão Comestível/genética , Variação Genética , Ambiente Controlado
18.
Evol Appl ; 15(10): 1594-1604, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36330302

RESUMO

A classic example of phenotypic plasticity in plants is the suit of phenotypic responses induced by a change in the ratio of red to far-red light (R∶FR) as a result of shading, also known as the shade avoidance syndrome (SAS). While the adaptive consequences of this syndrome have been extensively discussed in natural ecosystems, how SAS varies within crop populations and how SAS evolved during crop domestication and breeding remain poorly known. In this study, we grew a panel of 180 durum wheat (Triticum turgidum ssp. durum) genotypes spanning diversity from wild, early domesticated, and elite genetic compartments under two light treatments: low R:FR light (shaded treatment) and high R:FR light (unshaded treatment). We first quantified the genetic variability of SAS, here measured as a change in plant height at the seedling stage. We then dissected the genetic basis of this variation through genome-wide association mapping. Genotypes grown in shaded conditions were taller than those grown under unshaded conditions. Interaction between light quality and genotype did not affect plant height. We found six QTLs affecting plant height. Three significantly interacted with light quality among which the well-known Rht1 gene introgressed in elite germplasm during the Green Revolution. Interestingly at three loci, short genotypes systematically expressed reduced SAS, suggesting a positive genetic correlation between plant height and plant height plasticity. Overall, our study sheds light on the evolutionary history of crops and illustrates the relevance of genetic approaches to tackle agricultural challenges.

19.
Rev Assoc Med Bras (1992) ; 68(6): 780-784, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35766691

RESUMO

OBJECTIVE: The aim of this study was to evaluate the predictive factors for success following percutaneous nephrolithotomy in the supine position. METHODS: Patients who underwent percutaneous nephrolithotomy in the supine position from June 2011 to October 2018 were evaluated. Age, sex, body mass index, the American Society of Anesthesiologists physical status classification, hemoglobin level, number of previous surgeries, stone size, and the Guy's Stone Score were analyzed. Success was considered if no fragments were observed on the computed tomography scan on the first postoperative day. Univariate and multivariate analyses were performed to determine significant parameters. RESULTS: We evaluated 961 patients; of them, 483 (50.2%) underwent previous stone-related surgery, and 499 (51.9%) had Guy's Stone Score 3 or 4. The overall success rate in a single procedure was 40.7%, and complication rate was 13.7%. The univariate analysis showed that the maximum diameter of the stone (25.10±10 mm; p<0.001), previous percutaneous nephrolithotomy (OR 0.52; p<0.001), number of previous percutaneous nephrolithotomy (OR 0.15; p<0.001), the Guy's Stone Score (OR 0.28; p<0.001), and the number of tracts (OR 0.32; p<0.001) were significant. In the multivariate analysis, the number of previous percutaneous nephrolithotomy (OR 0.54; p<0.001) and the Guy's Stone Score (OR 0.25; p<0.001) were statically significant. CONCLUSIONS: Guy's Stone Score and the number of previous percutaneous nephrolithotomy are predictors of success with the supine position. Complex cases and with previous percutaneous interventions may require technical improvements to achieve higher stone-free rates.


Assuntos
Cálculos Renais , Nefrolitotomia Percutânea , Nefrostomia Percutânea , Índice de Massa Corporal , Humanos , Cálculos Renais/complicações , Cálculos Renais/diagnóstico por imagem , Cálculos Renais/cirurgia , Nefrolitotomia Percutânea/efeitos adversos , Nefrolitotomia Percutânea/métodos , Complicações Pós-Operatórias/etiologia , Estudos Retrospectivos , Resultado do Tratamento
20.
BMC Evol Biol ; 11: 181, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21702931

RESUMO

BACKGROUND: Introgressive events (e.g., hybridization, gene flow, horizontal gene transfer) and incomplete lineage sorting of ancestral polymorphisms are a challenge for phylogenetic analyses since different genes may exhibit conflicting genealogical histories. Grasses of the Triticeae tribe provide a particularly striking example of incongruence among gene trees. Previous phylogenies, mostly inferred with one gene, are in conflict for several taxon positions. Therefore, obtaining a resolved picture of relationships among genera and species of this tribe has been a challenging task. Here, we obtain the most comprehensive molecular dataset to date in Triticeae, including one chloroplastic and 26 nuclear genes. We aim to test whether it is possible to infer phylogenetic relationships in the face of (potentially) large-scale introgressive events and/or incomplete lineage sorting; to identify parts of the evolutionary history that have not evolved in a tree-like manner; and to decipher the biological causes of gene-tree conflicts in this tribe. RESULTS: We obtain resolved phylogenetic hypotheses using the supermatrix and Bayesian Concordance Factors (BCF) approaches despite numerous incongruences among gene trees. These phylogenies suggest the existence of 4-5 major clades within Triticeae, with Psathyrostachys and Hordeum being the deepest genera. In addition, we construct a multigenic network that highlights parts of the Triticeae history that have not evolved in a tree-like manner. Dasypyrum, Heteranthelium and genera of clade V, grouping Secale, Taeniatherum, Triticum and Aegilops, have evolved in a reticulated manner. Their relationships are thus better represented by the multigenic network than by the supermatrix or BCF trees. Noteworthy, we demonstrate that gene-tree incongruences increase with genetic distance and are greater in telomeric than centromeric genes. Together, our results suggest that recombination is the main factor decoupling gene trees from multigenic trees. CONCLUSIONS: Our study is the first to propose a comprehensive, multigenic phylogeny of Triticeae. It clarifies several aspects of the relationships among genera and species of this tribe, and pinpoints biological groups with likely reticulate evolution. Importantly, this study extends previous results obtained in Drosophila by demonstrating that recombination can exacerbate gene-tree conflicts in phylogenetic reconstructions.


Assuntos
Filogenia , Poaceae/genética , Teorema de Bayes , Cloroplastos/genética , Genes de Plantas , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa