Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Exp Zool B Mol Dev Evol ; 340(2): 182-196, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34958528

RESUMO

The genitalia present some of the most rapidly evolving anatomical structures in the animal kingdom, possessing a variety of parts that can distinguish recently diverged species. In the Drosophila melanogaster group, the phallus is adorned with several processes, pointed outgrowths, that are similar in size and shape between species. However, the complex three-dimensional nature of the phallus can obscure the exact connection points of each process. Previous descriptions based upon adult morphology have primarily assigned phallic processes by their approximate positions in the phallus and have remained largely agnostic regarding their homology relationships. In the absence of clearly identified homology, it can be challenging to model when each structure first evolved. Here, we employ a comparative developmental analysis of these processes in eight members of the melanogaster species group to precisely identify the tissue from which each process forms. Our results indicate that adult phallic processes arise from three pupal primordia in all species. We found that in some cases the same primordia generate homologous structures whereas in other cases, different primordia produce phenotypically similar but remarkably non-homologous structures. This suggests that the same gene regulatory network may have been redeployed to different primordia to induce phenotypically similar traits. Our results highlight how traits diversify and can be redeployed, even at short evolutionary scales.


Assuntos
Drosophila melanogaster , Drosophila , Masculino , Animais , Genitália Masculina/anatomia & histologia , Evolução Biológica , Genitália
2.
Genetica ; 150(6): 343-353, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36242716

RESUMO

Quantitative genetics aims at untangling the genetic and environmental effects on phenotypic variation. Trait heritability, which summarizes the relative importance of genetic effects, is estimated at the intraspecific level, but theory predicts that heritability could influence long-term evolution of quantitative traits. The phylogenetic signal concept bears resemblance to heritability and it has often been called species-level heritability. Under certain conditions, such as trait neutrality or contribution to phylogenesis, within-species heritability and between-species phylogenetic signal should be correlated. Here, we investigate the potential relationship between these two concepts by examining the evolution of multiple morphological traits for which heritability has been estimated in Drosophila melanogaster. Specifically, we analysed 42 morphological traits in both sexes on a phylogeny inferred from 22 nuclear genes for nine species of the melanogaster subgroup. We used Pagel's λ as a measurement of phylogenetic signal because it is the least influenced by the number of analysed taxa. Pigmentation traits showed the strongest concordance with the phylogeny, but no correlation was found between phylogenetic signal and heritability estimates mined from the literature. We obtained data for multiple climatic variables inferred from the geographical distribution of each species. Phylogenetic regression of quantitative traits on climatic variables showed a significantly positive correlation with heritability. Convergent selection, the response to which depends on the trait heritability, may have led to the null association between phylogenetic signal and heritability for morphological traits in Drosophila. We discuss the possible causes of discrepancy between both statistics and caution against their confusion in evolutionary biology.


Assuntos
Drosophila melanogaster , Drosophila , Feminino , Masculino , Animais , Drosophila melanogaster/genética , Filogenia , Fenótipo , Drosophila/genética , Pigmentação/genética
3.
PLoS Genet ; 14(11): e1007770, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30388103

RESUMO

Y chromosomes are widely believed to evolve from a normal autosome through a process of massive gene loss (with preservation of some male genes), shaped by sex-antagonistic selection and complemented by occasional gains of male-related genes. The net result of these processes is a male-specialized chromosome. This might be expected to be an irreversible process, but it was found in 2005 that the Drosophila pseudoobscura Y chromosome was incorporated into an autosome. Y chromosome incorporations have important consequences: a formerly male-restricted chromosome reverts to autosomal inheritance, and the species may shift from an XY/XX to X0/XX sex-chromosome system. In order to assess the frequency and causes of this phenomenon we searched for Y chromosome incorporations in 400 species from Drosophila and related genera. We found one additional large scale event of Y chromosome incorporation, affecting the whole montium subgroup (40 species in our sample); overall 13% of the sampled species (52/400) have Y incorporations. While previous data indicated that after the Y incorporation the ancestral Y disappeared as a free chromosome, the much larger data set analyzed here indicates that a copy of the Y survived as a free chromosome both in montium and pseudoobscura species, and that the current Y of the pseudoobscura lineage results from a fusion between this free Y and the neoY. The 400 species sample also showed that the previously suggested causal connection between X-autosome fusions and Y incorporations is, at best, weak: the new case of Y incorporation (montium) does not have X-autosome fusion, whereas nine independent cases of X-autosome fusions were not followed by Y incorporations. Y incorporation is an underappreciated mechanism affecting Y chromosome evolution; our results show that at least in Drosophila it plays a relevant role and highlight the need of similar studies in other groups.


Assuntos
Drosophila/classificação , Drosophila/genética , Cromossomo Y/genética , Animais , Evolução Molecular , Feminino , Duplicação Gênica , Genes de Insetos , Ligação Genética , Masculino , Modelos Genéticos , Filogenia , Seleção Genética , Especificidade da Espécie , Translocação Genética , Cromossomo X/genética
4.
Mol Biol Evol ; 35(2): 312-334, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29048573

RESUMO

Reproductive isolation is an intrinsic aspect of species formation. For that reason, the identification of the precise isolating traits, and the rates at which they evolve, is crucial to understanding how species originate and persist. Previous work has measured the rates of evolution of prezygotic and postzygotic barriers to gene flow, yet no systematic analysis has studied the rates of evolution of postmating-prezygotic (PMPZ) barriers. We measured the magnitude of two barriers to gene flow that act after mating occurs but before fertilization. We also measured the magnitude of a premating barrier (female mating rate in nonchoice experiments) and two postzygotic barriers (hybrid inviability and hybrid sterility) for all pairwise crosses of all nine known extant species within the melanogaster subgroup. Our results indicate that PMPZ isolation evolves faster than hybrid inviability but slower than premating isolation. Next, we partition postzygotic isolation into different components and find that, as expected, hybrid sterility evolves faster than hybrid inviability. These results lend support for the hypothesis that, in Drosophila, reproductive isolation mechanisms (RIMs) that act early in reproduction (or in development) tend to evolve faster than those that act later in the reproductive cycle. Finally, we tested whether there was evidence for reinforcing selection at any RIM. We found no evidence for generalized evolution of reproductive isolation via reinforcement which indicates that there is no pervasive evidence of this evolutionary process. Our results indicate that PMPZ RIMs might have important evolutionary consequences in initiating speciation and in the persistence of new species.


Assuntos
Drosophila/genética , Isolamento Reprodutivo , Animais , Drosophila/crescimento & desenvolvimento , Feminino , Hibridização Genética , Masculino , Filogenia
5.
Proc Natl Acad Sci U S A ; 113(17): 4771-6, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27044093

RESUMO

Recurrent specialization on similar host plants offers a unique opportunity to unravel the evolutionary and genetic mechanisms underlying dietary shifts. Recent studies have focused on ecological races belonging to the same species, but it is hard in many cases to untangle the role of adaptive introgression versus distinct mutations in facilitating recurrent evolution. We discovered on the island of Mayotte a population of the generalist fly Drosophila yakuba that is strictly associated with noni (Morinda citrifolia). This case strongly resembles Drosophila sechellia, a genetically isolated insular relative of D. yakuba whose intensely studied specialization on toxic noni fruits has always been considered a unique event in insect evolution. Experiments revealed that unlike mainland D. yakuba strains, Mayotte flies showed strong olfactory attraction and significant toxin tolerance to noni. Island females strongly discriminated against mainland males, suggesting that dietary adaptation has been accompanied by partial reproductive isolation. Population genomic analysis indicated a recent colonization (∼29 kya), at a time when year-round noni fruits may have presented a predictable resource on the small island, with ongoing migration after colonization. This relatively recent time scale allowed us to search for putatively adaptive loci based on genetic variation. Strong signals of genetic differentiation were found for several detoxification genes, including a major toxin tolerance locus in D. sechellia Our results suggest that recurrent evolution on a toxic resource can involve similar historical events and common genetic bases, and they establish an important genetic system for the study of early stages of ecological specialization and speciation.


Assuntos
Drosophila/genética , Frutas/toxicidade , Animais , Ilhas , Morinda/toxicidade , Olfato/genética
6.
J Therm Biol ; 72: 118-126, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29496004

RESUMO

Thoracic and abdominal pigmentation were measured in Drosophila melanogaster under a cold circadian stress (8-25 °C) and a heat one (18-33 °C) and compared to the phenotypes observed under similar but constant temperatures of 17 or 25 °C respectively. An isofemale line design permitted to submit each line (full sibs) to the four thermal regimes. Under cold stress, the pigmentation was similar to the value observed at constant 25 °C, suggesting a kind of functional dominance of the high temperature phase. In all cases, thermal stresses increased the individual environmental variance, i.e., increased the developmental instability. Genetic correlations between lines were not modified by the stresses but provided some unexpected and surprising results, which should be confirmed by further investigations: for example, negative correlations between pigmentation and body size or sternopleural bristle number. As a whole, the data do not confirm the hypothesis that under stressing conditions a hidden genetic variability could be unravelled, permitting a faster adaptation to environmental changes.


Assuntos
Resposta ao Choque Frio , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Resposta ao Choque Térmico , Pigmentação , Animais , Feminino , Variação Genética , Fenótipo
7.
Genetica ; 145(3): 307-317, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28429244

RESUMO

Metric (e.g., body size) and meristic (e.g., bristle number) traits are of general use in quantitative genetic studies, and the phenotypic variance is subdivided into a genetic and a non-genetic environmental component. The non-genetic variance may have two origins: a common garden effect between individuals and a developmental instability within the same individual. Developmental instability may be studied by considering the fluctuating asymmetry (FA) between the two sides of the body. The isofemale line technique is a convenient method for investigating the architecture of natural populations but has been rarely implemented for investigating FA. In this paper, we use this experimental design for analyzing four meristic traits in eight populations of the cosmopolitan Zaprionus indianus. A study of the correlation between left and right side of each line revealed that almost 90% of the variability was due to a developmental noise, while a much higher correlation among the means of the lines from the same population was observed. A slight trend toward a directional asymmetry was observed: more thoracic bristles on the left side. Four kinds of indices, scaled or non-scaled to the mean were used for comparing the different traits. Unscaled values (mean absolute values or standard deviation of each line) revealed a linear increase with the means. Interestingly the results of ovariole number were included in the same regression. With the scaled indices (mean absolute divided by each individual value or stadard deviation devided by the mean), the differences among traits were considerably decreased, but still remained significant. The mean FA of the various traits were not correlated, suggesting that each trait harbors its own developmental stability. The CVs of FA were high with a magnitude similar to those of the trait themselves, slightly less than 10%. Finally, even with the isofemale line design, which is a powerful means for unravelling slight genetic variations, we did not to find any clear indication of a genetic component of FA under the optimal environmental conditions used in this study.


Assuntos
Tamanho Corporal/genética , Drosophilidae/genética , Variação Genética , Animais , Drosophilidae/crescimento & desenvolvimento , Característica Quantitativa Herdável
8.
Ecol Evol ; 12(4): e8821, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35432924

RESUMO

Adaptive introgression is ubiquitous in animals, but experimental support for its role in driving speciation remains scarce. In the absence of conscious selection, admixed laboratory strains of Drosophila asymmetrically and progressively lose alleles from one parental species and reproductive isolation against the predominant parent ceases after 10 generations. Here, we selectively introgressed during 1 year light pigmentation genes of D. santomea into the genome of its dark sibling D. yakuba, and vice versa. We found that the pace of phenotypic change differed between the species and the sexes and identified through genome sequencing common as well as distinct introgressed loci in each species. Mating assays showed that assortative mating between introgressed flies and both parental species persisted even after 4 years (~60 generations) from the end of the selection. Those results indicate that selective introgression of as low as 0.5% of the genome can beget morphologically distinct and reproductively isolated strains, two prerequisites for the delimitation of new species. Our findings hence represent a significant step toward understanding the genome-wide dynamics of speciation-through-introgression.

9.
Curr Biol ; 32(1): 111-123.e5, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34788634

RESUMO

Genome-scale sequence data have invigorated the study of hybridization and introgression, particularly in animals. However, outside of a few notable cases, we lack systematic tests for introgression at a larger phylogenetic scale across entire clades. Here, we leverage 155 genome assemblies from 149 species to generate a fossil-calibrated phylogeny and conduct multilocus tests for introgression across 9 monophyletic radiations within the genus Drosophila. Using complementary phylogenomic approaches, we identify widespread introgression across the evolutionary history of Drosophila. Mapping gene-tree discordance onto the phylogeny revealed that both ancient and recent introgression has occurred across most of the 9 clades that we examined. Our results provide the first evidence of introgression occurring across the evolutionary history of Drosophila and highlight the need to continue to study the evolutionary consequences of hybridization and introgression in this genus and across the tree of life.


Assuntos
Drosophila , Genoma , Animais , Evolução Biológica , Drosophila/genética , Hibridização Genética , Filogenia
10.
Ecol Evol ; 11(12): 7492-7506, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34188829

RESUMO

Male genitalia are usually extremely divergent between closely related species, but relatively constant within one species. Here we examine the effect of temperature on the shape of the ventral branches, a male genital structure involved in reproductive isolation, in the sister species Drosophila santomea and Drosophila yakuba. We designed a semi-automatic measurement machine learning pipeline that can reliably identify curvatures and landmarks based on manually digitized contours of the ventral branches. With this method, we observed that temperature does not affect ventral branches in D. yakuba but that in D. santomea ventral branches tend to morph into a D. yakuba-like shape at lower temperature. We found that male genitalia structures involved in reproductive isolation can be relatively variable within one species and can resemble the shape of closely related species' genitalia through plasticity to temperature. Our results suggest that reproductive isolation mechanisms can be dependent on the environmental context.

11.
Mol Phylogenet Evol ; 55(1): 335-339, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19761854

RESUMO

The Zaprionus genus group comprises three drosophilid genera (Zaprionus, Phorticella and Samoaia) that are thought to be related to the Drosophila immigrans species group. We revised the phylogenetic relationships among the three genera and their placement within the subfamily Drosophilinae using one mitochondrial (COII) and one nuclear (Amyrel) gene. The Bayesian tree inferred from concatenated amino acid sequences of the two genes strongly suggests the polyphyly of the Zaprionus genus group and of each of the genera Zaprionus and Phorticella. Paraphyly of the D.immigrans species group was also shown here; the quadrilineata subgroup formed the sister clade to the genus Samoaia. These results suggest the necessity of taxonomic revisions for some relevant genera and species groups included within the genus Drosophila.


Assuntos
Drosophilidae/genética , Evolução Molecular , Filogenia , Animais , Núcleo Celular/genética , DNA Mitocondrial/genética , Drosophilidae/classificação , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie
12.
Fly (Austin) ; 13(1-4): 51-64, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31401934

RESUMO

Animal terminalia represent some of the most diverse and rapidly evolving structures in the animal kingdom, and for this reason have been a mainstay in the taxonomic description of species. The terminalia of Drosophila melanogaster, with its wide range of experimental tools, have recently become the focus of increased interest in the fields of development, evolution, and behavior. However, studies from different disciplines have often used discrepant terminologies for the same anatomical structures. Consequently, the terminology of genital parts has become a barrier to integrating results from different fields, rendering it difficult to determine what parts are being referenced. We formed a consortium of researchers studying the genitalia of D. melanogaster to help establish a set of naming conventions. Here, we present a detailed visual anatomy of male genital parts, including a list of synonymous terms, and suggest practices to avoid confusion when referring to anatomical parts in future studies. The goal of this effort is to facilitate interdisciplinary communication and help newcomers orient themselves within the exciting field of Drosophila genitalia.


Assuntos
Drosophila melanogaster/anatomia & histologia , Genitália Masculina/anatomia & histologia , Terminologia como Assunto , Animais , Masculino
13.
J Genet ; 87(3): 209-17, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19147905

RESUMO

The phenotypic plasticity of wing size and wing shape of Zaprionus indianus was investigated in relation to growth temperature (17 degrees C to 31 degrees C) in two natural populations living under different climates, equatorial and subtropical. The two populations were clearly distinguished not only by their wing size (the populations from the colder climate being bigger in size), but also by the shape of the response curves to growth temperature i.e., their reaction norms. In this respect, the temperature at which the size of the wing was maximum was about 3 degrees C higher in the equatorial population. Such a difference in size plasticity is already found in two other nonclosely related species, might be a general evolutionary pattern in drosophilids. Wing shape was investigated by calculating an ellipse included into the wing blade, then by considering the ratio of the two axes, and also by analysing the angular position of 10 wing-vein landmarks. For an overall shape index (ratio of the two axes of the ellipse), a regular and almost linear increase was observed with increasing temperature i.e., a more round shape at high temperatures. Wing shape was also analysed by considering the variations of the various angles according to temperature. A diversity of response curves was observed, revealing either a monotonous increase or decrease with increasing temperature, and sometimes a bell shape curve. An interesting conclusion is that, in most cases, a significant difference was observed between the two populations, and the difference was more pronounced at low temperatures. These angular variations are difficult to interpret in an evolutionary context. More comparative studies should be undertaken before reaching some general conclusions.


Assuntos
Adaptação Fisiológica , Clima , Drosophilidae/anatomia & histologia , Asas de Animais/anatomia & histologia , Animais , Drosophilidae/crescimento & desenvolvimento , Feminino , Masculino , Tamanho do Órgão , Fenótipo , Temperatura , Asas de Animais/crescimento & desenvolvimento
14.
J Genet ; 87(4): 407-19, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19147930

RESUMO

Environmental stress has been suggested to be a major evolutionary force, both through inducing strong selection and because of its direct impact on developmental buffering processes that alter the evolvability of organisms. In particular, temperature has attracted much attention because of its importance as an ecological feature and the relative ease with which it can be experimentally manipulated in the lab. Evolution Canyon, Lower Nahal Oren, Israel, is a well studied natural site where ecological parameters are suspected to drive evolutionary differentiation. In this study, using Drosophila melanogaster isofemale lines derived from wild flies collected on both slopes of the canyon, we investigated the effect of developmental temperature upon the different components of phenotypic variation of a complex trait: the wing. Combining geometric and traditional morphometrics, we find only limited evidence for a differentiation among slopes. Investigating simultaneously phenotypic plasticity, genetic variation among isofemale lines, variation among individuals and fluctuating asymmetry, we could not identify a consistent effect of the stressful conditions encountered on the south facing slope. The prevailing structuring effect is that of the experimentally manipulated temperature which clearly influences wing mean size and shape. Variability, in contrast, is not consistently affected by temperature. Finally, we investigated the specific relationship between individual variation and fluctuating asymmetry. Using metric multi-dimensional scaling we show that the related patterns of wing shape variation are not identical, supporting the view that the underlying developmental processes are to a certain extent different.


Assuntos
Evolução Biológica , Drosophila melanogaster/anatomia & histologia , Asas de Animais/anatomia & histologia , Análise de Variância , Animais , Israel , Tamanho do Órgão , Análise de Componente Principal
15.
Curr Biol ; 28(21): 3450-3457.e13, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30344115

RESUMO

Diverse traits often covary between species [1-3]. The possibility that a single mutation could contribute to the evolution of several characters between species [3] is rarely investigated as relatively few cases are dissected at the nucleotide level. Drosophila santomea has evolved additional sex comb sensory teeth on its legs and has lost two sensory bristles on its genitalia. We present evidence that a single nucleotide substitution in an enhancer of the scute gene contributes to both changes. The mutation alters a binding site for the Hox protein Abdominal-B in the developing genitalia, leading to bristle loss, and for another factor in the developing leg, leading to bristle gain. Our study suggests that morphological evolution between species can occur through a single nucleotide change affecting several sexually dimorphic traits. VIDEO ABSTRACT.


Assuntos
Evolução Biológica , Proteínas de Drosophila/genética , Drosophila/anatomia & histologia , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Animais , Sítios de Ligação , Proteínas de Drosophila/metabolismo , Evolução Molecular , Genitália Masculina/anatomia & histologia , Proteínas de Homeodomínio/metabolismo , Masculino , Mutação , Nucleotídeos/genética
16.
J Genet ; 86(2): 149-58, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17968142

RESUMO

Mesosternal (MS) bristles in Drosophila are a pair of machrochaetae found at the sternal end of the sternopleural (STP) microchaetae, and are thought to be invariable. In a closely related drosophilid genus, Zaprionus, their number is four and, in contrast to Drosophila, they show interspecific and intraspecific variability. The genetic basis of MS bristle number variability was studied in Z. indianus, the only cosmopolitan species of the genus. The trait responded rapidly to selection and two lines were obtained, one lacking any bristles (0-0) and the other bearing the normal phenotype (2-2). Other symmetrical phenotypes, (1-1) and (3-3), could also be selected for, but with lesser success. By contrast, STP bristle number did not vary significantly between the two lines (0-0) and (2-2), revealing its genetic independence from MS bristle number. Reciprocal crosses between these two lines showed that MS bristle number is mainly influenced by a major gene on the X chromosome (i.e. F(1) males always resembled their mothers) with codominant expression (i.e. heterozygous F(1) females harboured an average phenotype of 2 bristles). However, trait penetrance was incomplete and backcrosses revealed that this variability was partly due to genetic modifiers, most likely autosomal. The canalization of MS bristle number was investigated under different temperatures, and the increased appearance of abnormal phenotypes mainly occurred at extreme temperatures. There was a bias, however, towards bristle loss, as shown by a liability (developmental map) analysis. Finally, when ancestral and introduced populations were compared, the latter were far less stable, suggesting that genetic bottlenecks may perturb the MS bristle number canalization system. MS bristle number, thus, appears to be an excellent model for investigating developmental canalization at both the quantitative and the molecular level.


Assuntos
Cílios/genética , Drosophilidae/anatomia & histologia , Drosophilidae/genética , Genes Ligados ao Cromossomo X , Variação Genética , Característica Quantitativa Herdável , Animais , Contagem de Células , Cruzamentos Genéticos , Feminino , Geografia , Filogenia , Seleção Genética , Especificidade da Espécie , Esterno
17.
Evol Lett ; 1(2): 73-85, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30283640

RESUMO

Specialization onto different host plants has been hypothesized to be a major driver of diversification in insects, and traits controlling olfaction have been shown to play a fundamental role in host preferences. A diverse set of olfactory genes control olfactory traits in insects, and it remains unclear whether specialization onto different hosts is likely to involve a nonrandom subset of these genes. Here, we test the role of olfactory genes in a novel case of specialization in Drosophila orena. We report the first population-level sample of D. orena on the West African island of Bioko, since its initial collection in Cameroon in 1975, and use field experiments and behavioral assays to show that D. orena has evolved a strong preference for waterberry (Syzygium staudtii). We then show that a nonrandom subset of genes controlling olfaction--those controlling odorant-binding and chemosensory proteins--have an enriched signature of positive selection relative to the rest of the D. orena genome. By comparing signatures of positive selection on olfactory genes between D. orena and its sister species, D. erecta we show that odorant-binding and chemosensory have evidence of positive selection in both species; however, overlap in the specific genes with evidence of selection in these two classes is not greater than expected by chance. Finally, we use quantitative complementation tests to confirm a role for seven olfactory loci in D. orena's preference for waterberry fruit. Together, our results suggest that D. orena and D. erecta have specialized onto different host plants through convergent evolution at the level of olfactory gene family, but not at specific olfactory genes.

18.
BMC Evol Biol ; 6: 67, 2006 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-16942614

RESUMO

BACKGROUND: Populations of Drosophila melanogaster show differences in many morphometrical traits according to their geographic origin. Despite the widespread occurrence of these differences in more than one Drosophila species, the actual selective mechanisms controlling the genetic basis of such variation are not fully understood. Thermal selection is considered to be the most likely cause explaining these differences. RESULTS: In our work, we investigated several life history traits (body size, duration of development, preadult survival, longevity and productivity) in two tropical and two temperate natural populations of D. melanogaster recently collected, and in a temperate population maintained for twelve years at the constant temperature of 18 degrees C in the laboratory. In order to characterise the plasticity of these life history traits, the populations were grown at 12, 18, 28 and 31.2 degrees C. Productivity was the fitness trait that showed clearly adaptive differences between latitudinal populations: tropical flies did better in the heat but worse in the cold environments with respect to temperate flies. Differences for the plasticity of other life history traits investigated between tropical and temperate populations were also found. The differences were particularly evident at stressful temperatures (12 and 31.2 degrees C). CONCLUSION: Our results evidence a better cold tolerance in temperate populations that seems to have been evolved during the colonisation of temperate countries by D. melanogaster Afrotropical ancestors, and support the hypothesis of an adaptive response of plasticity to the experienced environment.


Assuntos
Clima , Drosophila melanogaster/crescimento & desenvolvimento , Análise de Variância , Animais , Drosophila melanogaster/fisiologia , Feminino , Fertilidade , França , Geografia , Itália , Longevidade , Masculino , Especificidade da Espécie , Temperatura , Asas de Animais/crescimento & desenvolvimento
19.
J Genet ; 85(1): 9-23, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16809835

RESUMO

A natural population of Drosophila melanogaster in southern France was sampled in three different years and 10 isofemale lines were investigated from each sample. Two size-related traits, wing and thorax length, were measured and the wing/thorax ratio was also calculated. Phenotypic plasticity was analysed after development at seven different constant temperatures, ranging from 12 degrees C to 31 degrees C. The three year samples exhibited similar reaction norms, suggesting a stable genetic architecture in the natural population. The whole sample (30 lines) was used to determine precisely the shape of each reaction norm, using a derivative analysis. The practical conclusion was that polynomial adjustments could be used in all cases, but with different degrees: linear for the wing/thorax ratio, quadratic for thorax length, and cubic for wing length. Both wing and thorax length exhibited concave reaction norms, with a maximum within the viable thermal range. The temperatures of the maxima were, however, quite different, around 15 degrees C for the wing and 19.5 degrees C for the thorax. Assuming that thorax length is a better estimate of body size, it is not possible to state that increasing the temperature results in monotonically decreasing size (the temperature-size rule), although this is often seen to be the case for genetic variations in latitudinal clines. The variability of the traits was investigated at two levels-within and between lines-and expressed as a coefficient of variation. The within-line (environmental) variability revealed a regular, quadratic convex reaction norm for the three traits, with a minimum around 21 degrees C. This temperature of minimum variability may be considered as a physiological optimum, while extreme temperatures are stressful. The between-line (genetic) variability could also be adjusted to quadratic polynomials, but the curvature parameters were not significant. Our results show that the mean values of the traits and their variance are both plastic, but react in different ways along a temperature gradient. Extreme low or high temperatures decrease the size but increase the variability. These effects may be considered as a functional response to environmental stress.


Assuntos
Tamanho Corporal , Drosophila melanogaster , Análise de Variância , Animais , Drosophila melanogaster/genética , Feminino , Variação Genética , Masculino , Fenótipo , Temperatura , Tórax/anatomia & histologia , Asas de Animais/anatomia & histologia
20.
Zoology (Jena) ; 109(4): 318-30, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16978850

RESUMO

The Drosophila obscura clade consists of about 41 species, of which 20 were used for analyses of wing and thorax length. Our primary goal was to investigate the magnitude of sexual size dimorphism (SSD) of these traits within this clade and to test Rensch's Rule [when females are larger than males, SSD (e.g., female/male ratio) should decrease with body size]. Our secondary goal was methodological and involved evaluating for these flies alternative measures of SSD (female/male ratio, female/male absolute difference, female/male relative difference), developing a bootstrap method to estimate the magnitude of intraspecific variation in SSD, and applying a new method of estimating allometric relationships that is phylogenetically based and incorporates error variance in both traits. All indices of SSD were strongly correlated for both size traits. Nevertheless, female/male ratio is the best index here: it is easily interpretable and essentially independent of size. For both traits, SSD (F/M) varied interspecifically, showed a strong phylogenetic signal, but did not differ for the main phylogenetic subgroups or correlate with latitude. Factors underlying variation in SSD in this clade are elusive and might include genetic drift. SSD (wing) tended to decrease with increasing size, as predicted by Rensch's Rule, though not consistently so. SSD (thorax) was unrelated to size. However, analysis of published data for thorax length of Drosophila spp. (N=42) with a larger size range showed that SSD decreased significantly with increasing size (consistent with Rensch's Rule), suggesting our ability to detect SSD-size relations in the D. obscura data may be limited by low statistical power.


Assuntos
Drosophila/anatomia & histologia , Caracteres Sexuais , Animais , Evolução Biológica , Tamanho Corporal , Drosophila/classificação , Feminino , Masculino , Filogenia , Tórax/anatomia & histologia , Asas de Animais/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa