RESUMO
This cross-sectional study of young adults examined associations of hangover remedy use with alcohol use problems. Results suggest that ever-use of hangover remedy products was positively associated with alcohol use problem score, drinks per typical drinking day, and alcohol use disorder symptom count. Use of hangover remedies among young adults merits further scientific and regulatory attention.
Assuntos
Intoxicação Alcoólica , Alcoolismo , Humanos , Adulto Jovem , Estudos Transversais , Consumo de Bebidas Alcoólicas/epidemiologiaRESUMO
INTRODUCTION: In our earlier efforts to establish gut-brain axis during alcohol use disorder (AUD), we have demonstrated that supplementation of C57BL/6J male mice with 8 mg/mL sodium butyrate, a major short-chain fatty acid, in drinking water reduced ethanol intake and neuroinflammatory response in antibiotic (ABX)-enhanced voluntary binge-like alcohol consumption model, drinking in the dark (DID). METHODS: To further evaluate the preclinical potential of SB, we have set a dose-escalation study in C57BL/6J male mice to test effects of ad libitum 20 mg/mL SB and 50 mg/mL SB and their combinations with ABX in the DID procedure for 4 weeks. Effects of these SB concentrations on ethanol consumption and bodily parameters were determined for the duration of the treatments. At the end of study, blood, liver, and intestinal tissues were collected to study any potential adverse effects ad to measure blood ethanol concentrations. RESULTS: Increasing SB concentrations in the drinking water caused a loss in the protective effect against ethanol consumption and produced adverse effects on body and liver weights, reduced overall liquid intake. The hypothesis that these effects were due to aversion to SB smell/taste at these high concentrations were further tested in a follow up proof-of-concept study with intragastric gavage administration of SB. The higher gavage dose (320 mg/kg) caused reduction in ethanol consumption without any adverse effects. CONCLUSION: Overall, these findings added more support for the therapeutic potential of SB in management of AUD, given a proper form of administration.
RESUMO
BACKGROUND: Anxiety disorders are the most prevalent mental illnesses in the U.S. and are estimated to consume one-third of the country's mental health treatment cost. Although anxiolytic therapies are available, many patients still exhibit treatment resistance, relapse, or substantial side effects. Further, due to the COVID-19 pandemic and stay-at-home order, social isolation, fear of the pandemic, and unprecedented times, the incidence of anxiety has dramatically increased. Previously, we have demonstrated dihydromyricetin (DHM), the major bioactive flavonoid extracted from Ampelopsis grossedentata, exhibits anxiolytic properties in a mouse model of social isolation-induced anxiety. Because GABAergic transmission modulates the immune system in addition to the inhibitory signal transmission, we investigated the effects of short-term social isolation on the neuroimmune system. METHODS: Eight-week-old male C57BL/6 mice were housed under absolute social isolation for 4 weeks. The anxiety-like behaviors after DHM treatment were examined using elevated plus-maze and open field behavioral tests. Gephyrin protein expression, microglial profile changes, NF-κB pathway activation, cytokine level, and serum corticosterone were measured. RESULTS: Socially isolated mice showed increased anxiety levels, reduced exploratory behaviors, and reduced gephyrin levels. Also, a dynamic alteration in hippocampal microglia were detected illustrated as a decline in microglia number and overactivation as determined by significant morphological changes including decreases in lacunarity, perimeter, and cell size and increase in cell density. Moreover, social isolation induced an increase in serum corticosterone level and activation in NF-κB pathway. Notably, DHM treatment counteracted these changes. CONCLUSION: The results suggest that social isolation contributes to neuroinflammation, while DHM has the ability to improve neuroinflammation induced by anxiety.
Assuntos
Flavonóis/farmacologia , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Isolamento Social/psicologia , Animais , Ansiedade/metabolismo , Ansiedade/prevenção & controle , Ansiedade/psicologia , Flavonóis/uso terapêutico , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Intravenous anesthetic agents are associated with cardiovascular instability and poorly tolerated in patients with cardiovascular disease, trauma, or acute systemic illness. We hypothesized that a new class of intravenous (IV) anesthetic molecules that is highly selective for the slow type of γ-aminobutyric acid type A receptor (GABAAR) could have potent anesthetic efficacy with limited cardiovascular effects. Through in silico screening using our GABAAR model, we identified a class of lead compounds that are N-arylpyrrole derivatives. Electrophysiological analyses using both an in vitro expression system and intact rodent hippocampal brain slice recordings demonstrate a GABAAR-mediated mechanism. In vivo experiments also demonstrate overt anesthetic activity in both tadpoles and rats with a potency slightly greater than that of propofol. Unlike the clinically approved GABAergic anesthetic etomidate, the chemical structure of our N-arylpyrrole derivative is devoid of the chemical moieties producing adrenal suppression. Our class of compounds also shows minimal to no suppression of blood pressure, in marked contrast to the hemodynamic effects of propofol. These compounds are derived from chemical structures not previously associated with anesthesia and demonstrate that selective targeting of GABAAR-slow subtypes may eliminate the hemodynamic side effects associated with conventional IV anesthetics.
Assuntos
Anestésicos , Agonistas de Receptores de GABA-A , Pirróis , Receptores de GABA-A/metabolismo , Anestésicos/química , Anestésicos/farmacologia , Animais , Avaliação Pré-Clínica de Medicamentos , Etomidato/química , Etomidato/farmacologia , Agonistas de Receptores de GABA-A/química , Agonistas de Receptores de GABA-A/farmacologia , Humanos , Camundongos , Pirróis/química , Pirróis/farmacologia , Ratos , Receptores de GABA-A/genética , Xenopus laevisRESUMO
Growing evidence supports the pivotal role of the bidirectional interplay between the gut microbiota and the central nervous system during the progression of alcohol use disorder (AUD). In our previous study, supplementation with sodium butyrate (SB) in C57BL/6J mice prevented increased ethanol consumption in a binge-like drinking paradigm (DID) as a result of treatment with a non-absorbable antibiotic cocktail (ABX). In this study, we tested the hypothesis that SB protection against enhanced ABX-induced ethanol consumption in mice is partially due to modulation of neuroinflammatory responses. Pro- and anti-inflammatory cytokines, as well as changes in microglia and astrocytes were analyzed in hippocampus tissues from ABX-, SB-, ABX+SB-treated mice subjected to 4-week DID. We found that ethanol without or with ABX treatment increased mRNA levels of key brain cytokines (MCP-1, TNF-α, IL-1ß, IL-6 and IL-10) while SB supplementation prevented these changes. Additionally, SB supplementation prevented changes in microglia, i.e., increase in Iba-1 positive cell number and morphology, and in astrocytes, i.e., decrease in GFAP-positive cell number, induced by combination of ethanol and ABX treatments. Our results suggest that gut microbiota metabolites can influence drinking behavior by modulation of neuroinflammation, highlighting the potential for microbiome-targeting strategies for treatment or prevention of AUD.
Assuntos
Alcoolismo , Citocinas , Animais , Camundongos , Ácido Butírico/farmacologia , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Etanol/efeitos adversos , Consumo de Bebidas Alcoólicas , Inflamação/tratamento farmacológico , Alcoolismo/tratamento farmacológico , Modelos Animais de Doenças , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Suplementos NutricionaisRESUMO
Dihydromyricetin is a natural bioactive flavonoid with unique GABAA receptor activity with a putative mechanism of action to reduce the intoxication effects of ethanol. Although dihydromyricetin's poor oral bioavailability limits clinical utility, the promise of this mechanism for the treatment of alcohol use disorder warrants further investigation into its specificity and druggable potential. These experiments investigated the bioavailability of dihydromyricetin in the brain and serum associated with acute anti-intoxicating effects in C57BL/6J mice. Dihydromyricetin (50 mg/kg IP) administered 0 or 15-min prior to ethanol (PO 5 g/kg) significantly reduced ethanol-induced loss of righting reflex. Total serum exposures (AUC0â24) of dihydromyricetin (PO 50 mg/kg) via oral (PO) administration were determined to be 2.5 µM × h (male) and 0.7 µM × h (female), while intraperitoneal (IP) administration led to 23.8-fold and 7.2- increases in AUC0â24 in male and female mice, respectively. Electrophysiology studies in α5ß3γ2 GABAA receptors expressed in Xenopus oocytes suggest dihydromyricetin (10 µM) potentiates GABAergic activity (+43.2%), and the metabolite 4-O-methyl-dihydromyricetin (10 µM) negatively modulates GABAergic activity (-12.6%). Our results indicate that administration route and sex significantly impact DHM bioavailability in mice, which is limited by poor absorption and rapid clearance. This correlates with the observed short duration of DHM's anti-intoxicating properties and highlights the need for further investigation into mechanism of DHM's potential anti-intoxicating properties.
Assuntos
Intoxicação Alcoólica/prevenção & controle , Encéfalo/metabolismo , Etanol/toxicidade , Flavonóis/farmacologia , Intoxicação Alcoólica/etiologia , Intoxicação Alcoólica/metabolismo , Intoxicação Alcoólica/patologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Depressores do Sistema Nervoso Central/toxicidade , Feminino , Flavonóis/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Alcohol use disorder (AUD) affects over 18 million people in the US. Unfortunately, pharmacotherapies available for AUD have limited clinical success and are under prescribed. Previously, we established that avermectin compounds (ivermectin [IVM] and moxidectin) reduce alcohol (ethanol/EtOH) consumption in mice, but these effects are limited by P-glycoprotein (Pgp/ABCB1) efflux. The current study tested the hypothesis that dihydromyricetin (DHM), a natural product suggested to inhibit Pgp, will enhance IVM potency as measured by changes in EtOH consumption. Using a within-subjects study design and two-bottle choice study, we tested the combination of DHM (10 mg/kg; i.p.) and IVM (0.5-2.5 mg/kg; i.p.) on EtOH intake and preference in male and female C57BL/6J mice. We also conducted molecular modeling studies of DHM with the nucleotide-binding domain of human Pgp that identified key binding residues associated with Pgp inhibition. We found that DHM increased the potency of IVM in reducing EtOH consumption, resulting in significant effects at the 1.0 mg/kg dose. This combination supports our hypothesis that inhibiting Pgp improves the potency of IVM in reducing EtOH consumption. Collectively, we demonstrate the feasibility of this novel combinatorial approach in reducing EtOH consumption and illustrate the utility of DHM in a novel combinatorial approach.
Assuntos
Alcoolismo/tratamento farmacológico , Flavonóis/farmacologia , Ivermectina/farmacologia , Consumo de Bebidas Alcoólicas/metabolismo , Consumo de Bebidas Alcoólicas/patologia , Alcoolismo/metabolismo , Alcoolismo/patologia , Animais , Quimioterapia Combinada , Feminino , Masculino , CamundongosRESUMO
BACKGROUND: Excess alcohol (ethanol, EtOH) consumption is a significant cause of chronic liver disease, accounting for nearly half of the cirrhosis-associated deaths in the United States. EtOH-induced liver toxicity is linked to EtOH metabolism and its associated increase in proinflammatory cytokines, oxidative stress, and the subsequent activation of Kupffer cells. Dihydromyricetin (DHM), a bioflavonoid isolated from Hovenia dulcis, can reduce EtOH intoxication and potentially protect against chemical-induced liver injuries. But there remains a paucity of information regarding the effects of DHM on EtOH metabolism and liver protection. As such, the current study tests the hypothesis that DHM supplementation enhances EtOH metabolism and reduces EtOH-mediated lipid dysregulation, thus promoting hepatocellular health. METHODS: The hepatoprotective effect of DHM (5 and 10 mg/kg; intraperitoneal injection) was evaluated using male C57BL/6J mice and a forced drinking ad libitum EtOH feeding model and HepG2/VL-17A hepatoblastoma cell models. EtOH-mediated lipid accumulation and DHM effects against lipid deposits were determined via H&E stains, triglyceride measurements, and intracellular lipid dyes. Protein expression of phosphorylated/total proteins and serum and hepatic cytokines was determined via Western blot and protein array. Total NAD+ /NADH Assay of liver homogenates was used to detect NAD + levels. RESULTS: DHM reduced liver steatosis, liver triglycerides, and liver injury markers in mice chronically fed EtOH. DHM treatment resulted in increased activation of AMPK and downstream targets, carnitine palmitoyltransferase (CPT)-1a, and acetyl CoA carboxylase (ACC)-1. DHM induced expression of EtOH-metabolizing enzymes and reduced EtOH and acetaldehyde concentrations, effects that may be partly explained by changes in NAD+ . Furthermore, DHM reduced the expression of proinflammatory cytokines and chemokines in sera and cell models. CONCLUSION: In total, these findings support the utility of DHM as a dietary supplement to reduce EtOH-induced liver injury via changes in lipid metabolism, enhancement of EtOH metabolism, and suppressing inflammation responses to promote liver health.
Assuntos
Etanol/efeitos adversos , Etanol/metabolismo , Flavonóis/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Hepatopatias Alcoólicas/prevenção & controle , Fígado/metabolismo , Adenilato Quinase/metabolismo , Animais , Suplementos Nutricionais , Ativação Enzimática/efeitos dos fármacos , Fígado Gorduroso Alcoólico/prevenção & controle , Células Hep G2 , Humanos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Triglicerídeos/metabolismoRESUMO
Mouse models of alcohol use disorder (AUD) revealed purinergic P2X4 receptors (P2X4Rs) as a promising target for AUD drug development. We have previously demonstrated that residues at the transmembrane (TM)-ectodomain interface and within the TM1 segment contribute to the formation of an ethanol action pocket in P2X4Rs. In the present study, we tested the hypothesis that there are more residues in TM1 and TM2 segments that are important for the ethanol sensitivity of P2X4Rs. Using site-directed mutagenesis and two electrode voltage-clamp electrophysiology in Xenopus oocytes, we found that arginine at position 33 (R33) in the TM1 segment plays a role in the ethanol sensitivity of P2X4Rs. Molecular models in both closed and open states provided evidence for interactions between R33 and aspartic acid at position 354 (D354) of the neighboring TM2 segment. The loss of ethanol sensitivity in mixtures of wild-type (WT) and reciprocal single mutants, R33D:WT and D354R:WT, versus the WT-like response in R33D-D354R:WT double mutant provided further support for this interaction. Additional findings indicated that valine at TM1 position 49 plays a role in P2X4R function by providing flexibility/stability during channel opening. Collectively, these findings identified new activity sites and suggest the importance of TM1-TM2 interaction for the function and ethanol sensitivity of P2X4Rs.
Assuntos
Aminoácidos/química , Etanol/metabolismo , Receptores Purinérgicos P2X4/química , Receptores Purinérgicos P2X4/metabolismo , Alanina/química , Alcoolismo/etiologia , Alcoolismo/metabolismo , Arginina/química , Modelos Moleculares , Mutagênese Sítio-Dirigida , Domínios Proteicos , Agonistas do Receptor Purinérgico P2X , Receptores Purinérgicos P2X4/genética , Relação Estrutura-AtividadeRESUMO
UNLABELLED: P2X4 receptors are ATP-gated cation channels that are widely expressed in the nervous system. To identify P2X4 receptor-expressing cells, we generated BAC transgenic mice expressing tdTomato under the control of the P2X4 receptor gene (P2rx4). We found sparse populations of tdTomato-positive neurons in most brain areas with patterns that matched P2X4 mRNA distribution. tdTomato expression within microglia was low but was increased by an experimental manipulation that triggered microglial activation. We found surprisingly high tdTomato expression in the hypothalamic arcuate nucleus (Arc) (i.e., within parts of the neural circuitry controlling feeding). Immunohistochemistry and genetic crosses of P2rx4 tdTomato mice with cell-specific GFP reporter lines showed that the tdTomato-expressing cells were mainly AgRP-NPY neurons and tanycytes. There was no electrophysiological evidence for functional expression of P2X4 receptors on AgRP-NPY neuron somata, but instead, we found clear evidence for functional presynaptic P2X4 receptor-mediated responses in terminals of AgRP-NPY neurons onto two of their postsynaptic targets (Arc POMC and paraventricular nucleus neurons), where ATP dramatically facilitated GABA release. The presynaptic responses onto POMC neurons, and the expression of tdTomato in AgRP-NPY neurons and tanycytes, were significantly decreased by food deprivation in male mice in a manner that was partially reversed by the satiety-related peptide leptin. Overall, we provide well-characterized tdTomato reporter mice to study P2X4-expressing cells in the brain, new insights on feeding-related regulation of presynaptic P2X4 receptor responses, and the rationale to explore extracellular ATP signaling in the control of feeding behaviors. SIGNIFICANCE STATEMENT: Cells expressing ATP-gated P2X4 receptors have proven problematic to identify and study in brain slice preparations because P2X4 expression is sparse. To address this limitation, we generated and characterized BAC transgenic P2rx4 tdTomato reporter mice. We report the distribution of tdTomato-expressing cells throughout the brain and particularly strong expression in the hypothalamic arcuate nucleus. Together, our studies provide a new, well-characterized tool with which to study P2X4 receptor-expressing cells. The electrophysiological studies enabled by this mouse suggest previously unanticipated roles for ATP and P2X4 receptors in the neural circuitry controlling feeding.
Assuntos
Encéfalo/citologia , Ingestão de Alimentos/fisiologia , Proteínas Luminescentes/metabolismo , Neurônios/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Encéfalo/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Privação de Alimentos/fisiologia , Grelina/farmacologia , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Técnicas In Vitro , Leptina/farmacologia , Lipopolissacarídeos/farmacologia , Proteínas Luminescentes/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neurônios/efeitos dos fármacos , Neuropeptídeo Y/metabolismo , Neurotransmissores/farmacologia , Técnicas de Patch-Clamp , Inibidores da Agregação Plaquetária/farmacologia , Pró-Opiomelanocortina/metabolismo , RNA Mensageiro/metabolismo , Receptores Purinérgicos P2X4/genética , Estatísticas não Paramétricas , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Ácido gama-Aminobutírico/metabolismoRESUMO
Alcohol (EtOH) intoxication causes changes in the rodent brain γ-aminobutyric acid receptor (GABAAR) subunit composition and function, playing a crucial role in EtOH withdrawal symptoms and dependence. Building evidence indicates that withdrawal from acute EtOH and chronic intermittent EtOH (CIE) results in decreased EtOH-enhanced GABAAR δ subunit-containing extrasynaptic and EtOH-insensitive α1ßγ2 subtype synaptic GABAARs but increased synaptic α4ßγ2 subtype, and increased EtOH sensitivity of GABAAR miniature postsynaptic currents (mIPSCs) correlated with EtOH dependence. Here we demonstrate that after acute EtOH intoxication and CIE, upregulation of hippocampal α4ßγ2 subtypes, as well as increased cell-surface levels of GABAAR α2 and γ1 subunits, along with increased α2ß1γ1 GABAAR pentamers in hippocampal slices using cell-surface cross-linking, followed by Western blot and coimmunoprecipitation. One-dose and two-dose acute EtOH treatments produced temporal plastic changes in EtOH-induced anxiolysis or withdrawal anxiety, and the presence or absence of EtOH-sensitive synaptic currents correlated with cell surface peptide levels of both α4 and γ1(new α2) subunits. CIE increased the abundance of novel mIPSC patterns differing in activation/deactivation kinetics, charge transfer, and sensitivity to EtOH. The different mIPSC patterns in CIE could be correlated with upregulated highly EtOH-sensitive α2ßγ subtypes and EtOH-sensitive α4ßγ2 subtypes. Naïve α4 subunit knockout mice express EtOH-sensitive mIPSCs in hippocampal slices, correlating with upregulated GABAAR α2 (and not α4) subunits. Consistent with α2, ß1, and γ1 subunits genetically linked to alcoholism in humans, our findings indicate that these new α2-containing synaptic GABAARs could mediate the maintained anxiolytic response to EtOH in dependent individuals, rat or human, contributing to elevated EtOH consumption.
Assuntos
Etanol/farmacologia , Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Receptores de GABA-A/biossíntese , Regulação para Cima/fisiologia , Animais , Hipocampo/efeitos dos fármacos , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Subunidades Proteicas/agonistas , Subunidades Proteicas/biossíntese , Ratos , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacosRESUMO
Purinergic P2X4 receptors (P2X4Rs) belong to the P2X superfamily of ion channels regulated by ATP. We recently demonstrated that P2X4R knockout (KO) mice exhibited deficits in sensorimotor gating, social interaction, and ethanol drinking behavior. Dopamine (DA) dysfunction may underlie these behavioral changes, but there is no direct evidence for P2X4Rs' role in DA neurotransmission. To test this hypothesis, we measured markers of DA function and dependent behaviors in P2X4R KO mice. P2X4R KO mice exhibited altered density of pre-synaptic markers including tyrosine hydroxylase, dopamine transporter; post-synaptic markers including dopamine receptors and phosphorylation of downstream targets including dopamine and cyclic-AMP regulated phosphoprotein of 32 kDa and cyclic-AMP-response element binding protein in different parts of the striatum. Ivermectin, an allosteric modulator of P2X4Rs, significantly affected dopamine and cyclic AMP regulated phosphoprotein of 32 kDa and extracellular regulated kinase1/2 phosphorylation in the striatum. Sensorimotor gating deficits in P2X4R KO mice were rescued by DA antagonists. Using the 6-hydroxydopamine model of DA depletion, P2X4R KO mice exhibited an attenuated levodopa (L-DOPA)-induced motor behavior, whereas ivermectin enhanced this behavior. Collectively, these findings identified an important role for P2X4Rs in maintaining DA homeostasis and illustrate how this association is important for CNS functions including motor control and sensorimotor gating. We propose that P2X4 receptors (P2X4Rs) regulate dopamine (DA) homeostasis and associated behaviors. Pre-synaptic and post-synaptic DA markers were significantly altered in the dorsal and ventral striatum of P2X4R KO mice, implicating altered DA neurotransmission. Sensorimotor gating deficits in P2X4R KO mice were rescued by DA antagonists. Ivermectin (IVM), a positive modulator of P2X4Rs, enhanced levodopa (L-DOPA)-induced motor behavior. These studies highlight potential interactions between P2X4Rs and DA system.
Assuntos
Comportamento Animal , Corpo Estriado/metabolismo , Dopamina/metabolismo , Receptores Purinérgicos P2X4/efeitos dos fármacos , Receptores Purinérgicos P2X4/fisiologia , Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/psicologia , Animais , Corpo Estriado/efeitos dos fármacos , Dopaminérgicos/farmacologia , Homeostase/genética , Relações Interpessoais , Ivermectina/farmacologia , Levodopa/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Oxidopamina , Reflexo de Sobressalto/efeitos dos fármacos , Transmissão Sináptica/genéticaRESUMO
In May 2014, Dr. Francis Collins, the director of U.S. National Institutes of Health (NIH), and Dr. Janine Clayton, the director of the U.S. National Institutes of Health Office of Research on Women's Health, published a commentary in the journal Nature announcing new policies to ensure that preclinical research funded by the NIH considers both males and females. While these policies are still developing, they have already generated great interest by the scientific community and triggered both criticism and applause. This review provides a description and interpretation of the NIH guidelines, and it traces the history that led to their implementation. As expected, this NIH initiative generated some anxiety in the scientific community. The use of female animals in the investigation of basic mechanisms is perceived to increase variability in the results, and the use of both sexes has been claimed to slow the pace of scientific discoveries and to increase the cost at a time characterized by declining research support. This review discusses issues related to the study of sex as a biological variable (SABV) in alcohol studies and provides examples of how researchers have successfully addressed some of them. A practical strategy is provided to include both sexes in biomedical research while maintaining control of the research direction. The inclusion of sex as an important biological variable in experimental design, analysis, and reporting of preclinical alcohol research is likely to lead to a better understanding of alcohol pharmacology and the development of alcohol use disorder, may promote drug discovery for new pharmacotherapies by increasing scientific rigor, and may provide clinical benefit to women's health. This review aims to promote the understanding of the NIH's SABV guidelines and to provide alcohol researchers with a theoretical and practical framework for working with both sexes in preclinical research.
Assuntos
National Institutes of Health (U.S.)/normas , Políticas , Projetos de Pesquisa/normas , Animais , Fatores Sexuais , Estados Unidos , Saúde da MulherRESUMO
BACKGROUND: Ivermectin (IVM) is an antiparasitic agent that has been shown to reduce alcohol intake in mice, suggesting IVM as a potential treatment for alcohol use disorder (AUD). However, the safety profile of IVM administered in combination with an intoxicating dose of alcohol has not been characterized in humans. METHODS: This pilot project sought to provide the first clinical evidence that IVM could be repositioned as an AUD pharmacotherapy by examining (i) the safety of combining IVM (30 mg oral , once a day [QD]) with an intoxicating dose of intravenous alcohol (0.08 g/dl) and (ii) the effects of IVM on alcohol cue-induced craving and subjective response to alcohol. Eleven individuals with AUD participated in a randomized, placebo-controlled, crossover study in which they received the study medication, participated in a cue exposure paradigm followed by intravenous alcohol administration, and remained in an inpatient unit overnight for observation. RESULTS: IVM treatment, versus placebo, did not increase the number or severity of adverse effects during alcohol administration or throughout the visit. However, IVM did not reduce cue-induced craving nor did it significantly affect subjective response to alcohol. CONCLUSIONS: These results suggest that IVM (30 mg oral, QD) is safe in combination with an intoxicating dose of alcohol, but do not provide evidence that this dose of IVM is effective in reducing alcohol craving or its reinforcing effects. Given the preclinical data suggesting IVM is effective in reducing alcohol consumption in mice, additional studies testing larger samples and alternate dosing regimens are warranted to further characterize the potential efficacy of IVM as an AUD treatment.
Assuntos
Transtornos Relacionados ao Uso de Álcool/tratamento farmacológico , Etanol/efeitos adversos , Ivermectina/efeitos adversos , Ivermectina/uso terapêutico , Administração Intravenosa , Adulto , Antiparasitários/efeitos adversos , Antiparasitários/uso terapêutico , Fissura/efeitos dos fármacos , Estudos Cross-Over , Etanol/administração & dosagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Reforço Psicológico , Adulto JovemRESUMO
A critical obstacle to developing effective medications to prevent and/or treat alcohol use disorders is the lack of specific knowledge regarding the plethora of molecular targets and mechanisms underlying alcohol (ethanol) action in the brain. To identify the role of individual receptor subunits in ethanol-induced behaviors, we developed a novel class of ultra-sensitive ethanol receptors (USERs) that allow activation of a single receptor subunit population sensitized to extremely low ethanol concentrations. USERs were created by mutating as few as four residues in the extracellular loop 2 region of glycine receptors (GlyRs) or γ-aminobutyric acid type A receptors (GABA(A)Rs), which are implicated in causing many behavioral effects linked to ethanol abuse. USERs, expressed in Xenopus oocytes and tested using two-electrode voltage clamp, demonstrated an increase in ethanol sensitivity of 100-fold over wild-type receptors by significantly decreasing the threshold and increasing the magnitude of ethanol response, without altering general receptor properties including sensitivity to the neurosteroid, allopregnanolone. These profound changes in ethanol sensitivity were observed across multiple subunits of GlyRs and GABA(A)Rs. Collectively, our studies set the stage for using USER technology in genetically engineered animals as a unique tool to increase understanding of the neurobiological basis of the behavioral effects of ethanol.
Assuntos
Encéfalo/efeitos dos fármacos , Etanol/farmacologia , Receptores de GABA-A/efeitos dos fármacos , Receptores de Glicina/efeitos dos fármacos , Animais , Feminino , Modelos Moleculares , Pregnanolona/farmacologia , Receptores de GABA-A/química , Receptores de Glicina/química , Relação Estrutura-Atividade , Xenopus laevis , Ácido gama-Aminobutírico/farmacologiaRESUMO
Our laboratory is investigating ivermectin (IVM) and other members of the avermectin family as new pharmaco-therapeutics to prevent and/or treat alcohol use disorders (AUDs). Earlier work found that IVM significantly reduced ethanol intake in mice and that this effect likely reflects IVM's ability to modulate ligand-gated ion channels. We hypothesized that structural modifications that enhance IVM's effects on key receptors and/or increase its brain concentration should improve its anti-alcohol efficacy. We tested this hypothesis by comparing the abilities of IVM and two other avermectins, abamectin (ABM) and selamectin (SEL), to reduce ethanol intake in mice, to alter modulation of GABAARs and P2X4Rs expressed in Xenopus oocytes and to increase their ability to penetrate the brain. IVM and ABM significantly reduced ethanol intake and antagonized the inhibitory effects of ethanol on P2X4R function. In contrast, SEL did not affect either measure, despite achieving higher brain concentrations than IVM and ABM. All three potentiated GABAAR function. These findings suggest that chemical structure and effects on receptor function play key roles in the ability of avermectins to reduce ethanol intake and that these factors are more important than brain penetration alone. The direct relationship between the effect of these avermectins on P2X4R function and ethanol intake suggest that the ability to antagonize ethanol-mediated inhibition of P2X4R function may be a good predictor of the potential of an avermectin to reduce ethanol intake and support the use of avermectins as a platform for developing novel drugs to prevent and/or treat AUDs.
Assuntos
Consumo de Bebidas Alcoólicas/tratamento farmacológico , Consumo de Bebidas Alcoólicas/fisiopatologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Ivermectina/análogos & derivados , Ivermectina/farmacologia , Transtornos Relacionados ao Uso de Álcool/prevenção & controle , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Depressores do Sistema Nervoso Central/administração & dosagem , Depressores do Sistema Nervoso Central/farmacologia , Etanol/administração & dosagem , Etanol/farmacologia , Agonistas de Aminoácidos Excitatórios/química , Agonistas de Aminoácidos Excitatórios/farmacocinética , Ivermectina/química , Ivermectina/farmacocinética , Masculino , Camundongos Endogâmicos C57BL , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo , XenopusRESUMO
P2X receptors (P2XRs) are a family of cation-permeable ligand-gated ion channels activated by synaptically released extracellular adenosine 5'-triphosphate. The P2X4 subtype is abundantly expressed in the central nervous system and is sensitive to low intoxicating ethanol concentrations. Genetic meta-analyses identified the p2rx4 gene as a candidate gene for innate alcohol intake and/or preference. The current study used mice lacking the p2rx4 gene (knockout, KO) and wildtype (WT) C57BL/6 controls to test the hypothesis that P2X4Rs contribute to ethanol intake. The early acquisition and early maintenance phases of ethanol intake were measured with three different drinking procedures. Further, we tested the effects of ivermectin (IVM), a drug previously shown to reduce ethanol's effects on P2X4Rs and to reduce ethanol intake and preference, for its ability to differentially alter stable ethanol intake in KO and WT mice. Depending on the procedure and the concentration of the ethanol solution, ethanol intake was transiently increased in P2X4R KO versus WT mice during the acquisition of 24-h and limited access ethanol intake. IVM significantly reduced ethanol intake in P2X4R KO and WT mice, but the degree of reduction was 50 % less in the P2X4R KO mice. Western blot analysis identified significant changes in γ-aminobutyric acidA receptor α1 subunit expression in brain regions associated with the regulation of ethanol behaviors in P2X4R KO mice. These findings add to evidence that P2X4Rs contribute to ethanol intake and indicate that there is a complex interaction between P2X4Rs, ethanol, and other neurotransmitter receptor systems.
Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Etanol/administração & dosagem , Receptores Purinérgicos P2X4/deficiência , Consumo de Bebidas Alcoólicas/genética , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Purinérgicos P2X4/genéticaRESUMO
The molecular mechanism(s) of action of anesthetic, and especially, intoxicating doses of alcohol (ethanol [EtOH]) have been of interest even before the advent of the Research Society on Alcoholism. Recent physiological, genetic, and biochemical studies have pin-pointed molecular targets for anesthetics and EtOH in the brain as ligand-gated ion channel (LGIC) membrane proteins, especially the pentameric (5 subunit) Cys-loop superfamily of neurotransmitter receptors including nicotinic acetylcholine (nAChRs), GABAA (GABAA Rs), and glycine receptors (GlyRs). The ability to demonstrate molecular and structural elements of these proteins critical for the behavioral effects of these drugs on animals and humans provides convincing evidence for their role in the drugs' actions. Amino acid residues necessary for pharmacologically relevant allosteric modulation of LGIC function by anesthetics and EtOH have been identified in these channel proteins. Site-directed mutagenesis revealed potential allosteric modulatory sites in both the trans-membrane domain (TMD) and extracellular domain (ECD). Potential sites of action and binding have been deduced from homology modeling of other LGICs with structures known from crystallography and cryo-electron microscopy studies. Direct information about ligand binding in the TMD has been obtained by photoaffinity labeling, especially in GABAA Rs. Recent structural information from crystallized procaryotic (ELIC and GLIC) and eukaryotic (GluCl) LGICs allows refinement of the structural models including evaluation of possible sites of EtOH action.
Assuntos
Anestésicos/farmacologia , Depressores do Sistema Nervoso Central/farmacologia , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/efeitos dos fármacos , Etanol/farmacologia , Modelos Moleculares , Sequência de Aminoácidos , Anestésicos/metabolismo , Animais , Depressores do Sistema Nervoso Central/metabolismo , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/metabolismo , Etanol/metabolismo , Humanos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Estrutura MolecularRESUMO
Ivermectin (IVM) is a commonly prescribed antiparasitic treatment with pharmacological effects on invertebrate glutamate ion channels resulting in paralysis and death of invertebrates. However, it can also act as a modulator of some vertebrate ion channels and has shown promise in facilitating L-DOPA treatment in preclinical models of Parkinson's disease. The pharmacological effects of IVM on dopamine terminal function were tested, focusing on the role of two of IVM's potential targets: purinergic P2X4 and nicotinic acetylcholine receptors. Ivermectin enhanced electrochemical detection of dorsal striatum dopamine release. Although striatal P2X4 receptors were observed, IVM effects on dopamine release were not blocked by P2X4 receptor inactivation. In contrast, IVM attenuated nicotine effects on dopamine release, and antagonizing nicotinic receptors prevented IVM effects on dopamine release. IVM also enhanced striatal cholinergic interneuron firing. L-DOPA enhances dopamine release by increasing vesicular content. L-DOPA and IVM co-application further enhanced release but resulted in a reduction in the ratio between high and low frequency stimulations, suggesting that IVM is enhancing release largely through changes in terminal excitability and not vesicular content. Thus, IVM is increasing striatal dopamine release through enhanced cholinergic activity on dopamine terminals.
RESUMO
Purinergic ionotropic P2X receptors are a family of cation-permeable channels that bind extracellular adenosine 5'-triphosphate. In particular, convergent lines of evidence have recently highlighted P2X(4) receptors as a potentially critical target in the regulation of multiple nervous and behavioural functions, including pain, neuroendocrine regulation and hippocampal plasticity. Nevertheless, the role of the P2X(4) receptor in behavioural organization remains poorly investigated. To study the effects of P2X(4) activation, we tested the acute effects of its potent positive allosteric modulator ivermectin (IVM, 2.5-10 mg/kg i.p.) on a broad set of paradigms capturing complementary aspects of perceptual, emotional and cognitive regulation in mice. In a novel open field, IVM did not induce significant changes in locomotor activity, but increased the time spent in the peripheral zone. In contrast, IVM produced anxiolytic-like effects in the elevated plus maze and marble burying tasks, as well as depression-like behaviours in the tail-suspension and forced swim tests. The agent induced no significant behavioural changes in the conditioned place preference test and in the novel object recognition task. Finally, the drug induced a dose-dependent decrease in sensorimotor gating, as assessed by pre-pulse inhibition (PPI) of the acoustic startle reflex. In P2X(4) knockout mice, the effects of IVM in the open field and elevated plus maze were similar to those observed in wild type mice; conversely, the drug significantly increased startle amplitude and failed to reduce PPI. Taken together, these results suggest that P2X(4) receptors may play a role in the regulation of sensorimotor gating.