Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS One ; 17(11): e0277561, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36355857

RESUMO

Acute myocardial infarction (AMI) results in weakening of the heart muscle and an increased risk for chronic heart failure. Therapeutic stem cells have been shown to reduce inflammatory signaling and scar tissue expansion, despite most of these studies being limited by poor retention of cells. Gelatin methacrylate (GelMA) coatings have been shown to increase the retention of these therapeutic cells near the infarct. In this work, we evaluate two different potential binding partners for GelMA-coated bone marrow cells (BMCs) and myocardial tissue: the extracellular matrix (ECM) and interstitial non-cardiomyocytes. While cells containing ß1 integrins mediate cell-ECM adhesion in vivo, these cells do not promote binding to our collagen-degraded, GelMA coating. Specifically, microscopic imagining shows that even with high integrin expression, GelMA-coated BMCs do not bind to cells within the myocardium. Alternatively, BMC incubation with decellularized heart tissue results in higher adhesion of coated cells versus uncoated cells supporting our GelMA-ECM binding mode. To further evaluate the ECM binding mode, cells were incubated on slides modified with one of three different major heart ECM components: collagen, laminin, or fibronectin. While all three components promoted higher adhesion than unmodified glass, collagen-coated slides resulted in a significantly higher adhesion of GelMA-coated BMCs over laminin and fibronectin. Incubation with unmodified BMCs confirmed that without a GelMA coating minimal adhesion of BMCs occurred. We conclude that GelMA cellular coatings significantly increase the binding of cells to collagen within the ECM. Our results provide progress towards a biocompatible and easily translatable method to enhance the retention of transplanted cells in human studies.


Assuntos
Gelatina , Infarto do Miocárdio , Humanos , Gelatina/farmacologia , Gelatina/metabolismo , Adesão Celular , Fibronectinas/metabolismo , Laminina/metabolismo , Miocárdio , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Metacrilatos , Infarto do Miocárdio/terapia , Infarto do Miocárdio/metabolismo
2.
J Biomed Mater Res A ; 109(3): 326-335, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32491263

RESUMO

Gelatin coatings are effective in increasing the retention of MSCs injected into the heart and minimizing the damage from acute myocardial infarction (AMI), but early studies suffered from low fractions of the MSCs coated with gelatin. Biotinylation of the MSC surface is a critical first step in the gelatin coating process, and in this study, we evaluated the use of biotinylated cholesterol "lipid insertion" anchors as a substitute for the covalent NHS-biotin anchors to the cell surface. Streptavidin-eosin molecules, where eosin is our photoinitiator, can then be bound to the cell surface through biotin-streptavidin affinity. The use of cholesterol anchors increased streptavidin density on the surface of MSCs further driving polymerization and allowing for an increased fraction of MSCs coated with gelatin (83%) when compared to NHS-biotin (52%). Additionally, the cholesterol anchors increased the uniformity of the coating on the MSC surface and supported greater numbers of coated MSCs even when the streptavidin density was slightly lower than that of an NHS-biotin anchoring strategy. Critically, this improvement in gelatin coating efficiency did not impact cytokine secretion and other critical MSC functions. Proper selection of the cholesterol anchor and the biotinylation conditions supports cellular function and densities of streptavidin on the MSC surface of up to ~105 streptavidin molecules/µm2 . In all, these cholesterol anchors offer an effective path towards the formation of conformal coatings on the majority of MSCs to improve the retention of MSCs in the heart following AMI.


Assuntos
Células Imobilizadas/química , Colesterol/química , Gelatina/química , Células-Tronco Mesenquimais/química , Animais , Materiais Biocompatíveis/química , Células Cultivadas , Células Imobilizadas/citologia , Células Imobilizadas/transplante , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/terapia
3.
ACS Omega ; 6(27): 17523-17530, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34278138

RESUMO

In vitro analysis of primary isolated adult cardiomyocyte physiological processes often involves optical imaging of dye-loaded cells on a glass substrate. However, when exposed to rapid solution changes, primary cardiomyocytes often move to compromise quantitative measures. Improved immobilization of cells to glass would permit higher throughput assays. Here, we engineer the peripheral membrane of cardiomyocytes with biotin to anchor cardiomyocytes to borosilicate glass coverslips functionalized with streptavidin. We use a rat cardiac myoblast cell line to determine general relationships between processing conditions, ligand density on the cell and the glass substrate, cellular function, and cell retention under shear flow. Use of the streptavidin-biotin system allows for more than 80% retention of cardiac myoblasts under conventional rinsing procedures, while unmodified cells are largely rinsed away. The adhesion system enables the in-field retention of cardiac cells during rapid fluid changes using traditional pipetting or a modern microfluidic system at a flow rate of 160 mL/min. Under fluid flow, the surface-engineered primary adult cardiomyocytes are retained in the field of view of the microscope, while unmodified cells are rinsed away. Importantly, the engineered cardiomyocytes are functional following adhesion to the glass substrate, where contractions are readily observed. When applying this adhesion system to cardiomyocyte functional analysis, we measure calcium release transients by caffeine induction at an 80% success rate compared to 20% without surface engineering.

4.
ACS Appl Bio Mater ; 4(2): 1655-1667, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014513

RESUMO

Mesenchymal stem cell (MSC) therapy has been widely tested in clinical trials to promote healing post-myocardial infarction. However, low cell retention and the need for a large donor cell number in human studies remain a key challenge for clinical translation. Natural biomaterials such as gelatin are ideally suited as scaffolds to deliver and enhance cell engraftment after transplantation. A potential drawback of MSC encapsulation in the hydrogel is that the bulky matrix may limit their biological function and interaction with the surrounding tissue microenvironment that conveys important injury signals. To overcome this limitation, we adopted a gelatin methacrylate (gelMA) cell-coating technique that photocross-links gelatin on the individual cell surface at the nanoscale. The present study investigated the cardiac protection of gelMA coated, hypoxia preconditioned MSCs (gelMA-MSCs) in a murine myocardial infarction (MI) model. We demonstrate that the direct injection of gelMA-MSC results in significantly higher myocardial engraftment 7 days after MI compared to uncoated MSCs. GelMA-MSC further amplified MSC benefits resulting in enhanced cardioprotection as measured by cardiac function, scar size, and angiogenesis. Improved MSC cardiac retention also led to a greater cardiac immunomodulatory function after injury. Taken together, this study demonstrated the efficacy of gelMA-MSCs in treating cardiac injury with a promising potential to reduce the need for donor MSCs through enhanced myocardial engraftment.


Assuntos
Sobrevivência Celular/genética , Células-Tronco Mesenquimais/metabolismo , Miocárdio/metabolismo , Animais , Humanos , Camundongos , Polímeros/metabolismo
5.
Bioprinting ; 182020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32864483

RESUMO

As the demand for organ transplants continues to grow faster than the supply of available donor organs, a new source of functional organs is needed. High resolution high throughput 3D bioprinting is one approach towards generating functional organs for transplantation. For high throughput printing, the need for increased print resolutions (by decreasing printing nozzle diameter) has a consequence: it increases the forces that cause cell damage during the printing process. Here, a novel cell encapsulation method provides mechanical protection from complete lysis of individual living cells during extrusion-based bioprinting. Cells coated in polymers possessing the mechanical properties finely-tuned to maintain size and shape following extrusion, and these encapsulated cells are protected from mechanical lysis. However, the shear forces imposed on the cells during extrusion still cause sufficient damage to compromise the cell membrane integrity and adversely impact normal cellular function. Cellular damage occurred during the extrusion process independent of the rapid depressurization.

6.
J Biol Eng ; 13: 5, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30675178

RESUMO

The research community is intent on harnessing increasingly complex biological building blocks. At present, cells represent a highly functional component for integration into higher order systems. In this review, we discuss the current application space for cellular coating technologies and emphasize the relationship between the target application and coating design. We also discuss how the cell and the coating interact in common analytical techniques, and where caution must be exercised in the interpretation of results. Finally, we look ahead at emerging application areas that are ideal for innovation in cellular coatings. In all, cellular coatings leverage the machinery unique to specific cell types, and the opportunities derived from these hybrid assemblies have yet to be fully realized.

7.
J Gen Virol ; 89(Pt 3): 741-750, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18272766

RESUMO

Recombinant simian varicella viruses (rSVVs) were engineered to express respiratory syncytial virus (RSV) antigens. The RSV surface glycoprotein G and second matrix protein M2 (22k) genes were cloned into the SVV genome, and recombinant viruses were characterized in vitro and in vivo. rSVVs were also engineered to express the membrane-anchored or secreted forms of the RSV-G protein as well as an RSV G lacking its chemokine mimicry motif (CX3C), which may have different effects on priming the host immune response. The RSV genes were efficiently expressed in rSVV/RSV-infected Vero cells as RSV-G and -M2 transcripts were detected by RT-PCR, and RSV antigens were detected by immunofluorescence and immunoblot assays. The rSVVs replicated efficiently in Vero cell culture. Rhesus macaques immunized with rSVV/RSV-G and rSVV/RSV-M2 vaccines produced antibody responses to SVV and RSV antigens. The results demonstrate that recombinant varicella viruses are suitable vectors for the expression of RSV antigens and may represent a novel vaccine strategy for immunization against both pathogens.


Assuntos
Anticorpos Antivirais/sangue , Herpesvirus Humano 3/imunologia , Recombinação Genética , Vírus Sinciciais Respiratórios/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas da Matriz Viral/imunologia , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Antígenos Virais/metabolismo , Varicela/imunologia , Varicela/prevenção & controle , Vacina contra Varicela/administração & dosagem , Vacina contra Varicela/genética , Vacina contra Varicela/imunologia , Chlorocebus aethiops , Vetores Genéticos , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/metabolismo , Macaca mulatta , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vacinas contra Vírus Sincicial Respiratório/genética , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sinciciais Respiratórios/genética , Células Vero , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo
8.
J Virol ; 81(15): 8149-56, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17507490

RESUMO

Simian varicella virus (SVV) and varicella-zoster virus (VZV) are closely related alphaherpesviruses that cause varicella (chickenpox) in nonhuman primates and humans, respectively. After resolution of the primary disease, SVV and VZV establish latent infection of neural ganglia and may later reactivate to cause a secondary disease (herpes zoster). This study investigated SVV gene expression in neural ganglia derived from latently infected vervet monkeys. SVV transcripts were detected in neural ganglia, but not in liver or lung tissues, of latently infected animals. A transcript mapping to open reading frame (ORF) 61 (herpes simplex virus type 1 [HSV-1] ICP0 homolog) was consistently detected in latently infected trigeminal, cervical, and lumbar ganglia by reverse transcriptase PCR. Further analysis confirmed that this SVV latency-associated transcript (LAT) was oriented antisense to the gene 61 mRNA. SVV ORF 21 transcripts were also detected in 42% of neural ganglia during latency. In contrast, SVV ORF 28, 29, 31, 62, and 63 transcripts were not detected in ganglia, liver, or lung tissues of latently infected animals. The results demonstrate that viral gene expression is limited during SVV latency and that a LAT antisense to an ICP0 homolog is expressed. In this regard, SVV gene expression during latency is similar to that of HSV-1 and other neurotropic animal alphaherpesviruses but differs from that reported for VZV.


Assuntos
Varicela , Gânglios/virologia , Herpesvirus Humano 3 , Fases de Leitura Aberta , Varicellovirus , Latência Viral , Animais , Chlorocebus aethiops , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/metabolismo , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Varicellovirus/genética , Varicellovirus/metabolismo
9.
Virology ; 364(2): 291-300, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17434552

RESUMO

The varicella-zoster virus (VZV) Oka vaccine offers potential as a recombinant vaccine against other pathogens. In this study, recombinant simian varicella viruses (rSVV) expressing simian immunodeficiency virus (SIV) envelope (env, gp130) and gag antigens were constructed. Expression of the SIV env and gag transcripts and antigens in rSVV-infected Vero cells was confirmed. The rSVV-SIVenv and rSVV-SIVgag viruses replicated as efficiently as wild-type SVV in cell culture. The immunogenicity of rSVV-SIVenv and rSVV-SIVgag was investigated in immunized vervet monkeys. Humoral immune responses to the SIV gp130 and gag antigens were detected as early as 4 weeks after the initial immunization with higher antibody titers following a booster immunization. Cellular immune responses against the SIV gp130 antigen were detected by ELISPOT assay. The rSVV established latent infection in neural ganglia. A subsequent study will evaluate the ability of rSVV vaccines expressing SIV antigens to protect nonhuman primates against simian AIDS.


Assuntos
Herpesvirus Humano 3/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Anticorpos Antivirais/biossíntese , Sequência de Bases , Linhagem Celular , Vacina contra Varicela/administração & dosagem , Vacina contra Varicela/genética , Chlorocebus aethiops , Primers do DNA/genética , DNA Viral/genética , DNA Viral/isolamento & purificação , Gânglios/virologia , Produtos do Gene env/genética , Produtos do Gene env/imunologia , Produtos do Gene gag/genética , Produtos do Gene gag/imunologia , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/fisiologia , Imunidade Celular , Imunização , Imunização Secundária , Modelos Animais , RNA Viral/genética , RNA Viral/isolamento & purificação , Recombinação Genética , Vacinas contra a SAIDS/administração & dosagem , Vacinas contra a SAIDS/genética , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/fisiologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Células Vero , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa