Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytochem Anal ; 33(1): 115-126, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34171936

RESUMO

INTRODUCTION: Aromatase is a CYP450 enzyme that catalyses the conversion of androgens into oestrogens, where the decrease in the production of oestrogens aided by aromatase inhibitors is considered a target in post-menopausal breast cancer therapy. TLC-bioautography is a technique employed for combining chromatographic separations on TLC plates with bioassays. This is the first report to evaluate aromatase inhibitory activity using this technique. OBJECTIVES: The aim of this study is to develop and validate a new TLC-bioautographic method for determination of aromatase inhibitory activity in 14 plant extracts. Two quantitation methods, the peak area method and reciprocal iso-inhibition volume (RIV) method, were compared and investigated to attain reliable results. Factors affecting the enzymatic reaction (temperature, pH, enzyme and substrate concentrations … etc.) were also investigated to attain the optimum parameters. METHODOLOGY: TLC assisted by digital image processing was implemented for quantitative estimation of the aromatase inhibition of 14 plant extracts using chrysin as positive control. The fluorometric substrate dibenzyl fluorescein (DBF) was utilised for the assay, where inhibitory compounds were visualised as dark spots against a blue fluorescent background. Two software programs, Sorbfil® videodensitometer (in the peak area method) and ImageJ® (in the RIV method), were thoroughly validated using the International Council on Harmonisation (ICH) guideline and used for quantitation. RESULTS: The RIV method showed superiority over the peak area method in the quantitation results of the tracks with non-homogenous background with %RSD values of 0.98 and 1.49 compared with 2.86 and 3.58, respectively. Further, the methods allow the comparison of the activity of different unknown inhibitory compounds without the need for a reference or a positive control. CONCLUSION: Using the TLC-bioautographic method by image processing combined with the RIV quantitation method, simultaneous separation and quantitation of aromatase inhibitory components could be applied to estimate the relative activity of various plant extracts.


Assuntos
Inibidores da Aromatase , Extratos Vegetais , Aromatase , Inibidores da Aromatase/farmacologia , Cromatografia em Camada Fina , Extratos Vegetais/farmacologia
2.
J Ethnopharmacol ; 324: 117779, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38262524

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Onion (Allium cepa L.) is one of the most widely distributed species within the Allium genus of family Amaryllidaceae. Onion has been esteemed for its medicinal properties since antiquity. It has been consumed for centuries in various indigenous cultures for the management of several ailments including microbial infections, respiratory, gastrointestinal, skin and cardio-vascular disorders, diabetes, renal colic, rheumatism, sexual impotence, menstrual pain, and headache. However, so far, there is a scarcity of recent data that compiles the plant chemistry, traditional practices, biological features, and toxicity. AIM OF THE WORK: The aim of this review is to provide a comprehensive and analytical overview of ethnopharmacological uses, phytochemistry, pharmacology, industrial applications, quality control, and toxicology of onion, to offer new perspectives and broad scopes for future studies. MATERIALS AND METHODS: The information gathered in this review was obtained from various sources including books, scientific databases such as Science Direct, Wiley, PubMed, Google Scholar, and other domestic and foreign literature. RESULTS: Onion has a long history of use as a traditional medicine for management of various conditions including infectious, inflammatory, respiratory, cardiovascular diseases, diabetes, and erectile dysfunction. More than 400 compounds have been identified in onion including flavonoids, phenolic acids, amino acids, peptides, saponins and fatty acids. The plant extracts and compounds showed various pharmacological activities such as antimicrobial, antidiabetic, anti-inflammatory, anti-hyperlipidemic, anticancer, aphrodisiac, cardioprotective, and neuroprotective activities. In addition to its predominant medicinal uses, onion has found various applications in the functional food industry. CONCLUSION: Extensive literature analysis reveals that onion extracts and bioactive constituents possess diverse pharmacological activities that can be beneficial for treating various diseases. However, the current research primarily revolves around the documentation of ethnic pharmacology and predominantly consists of in vitro studies, with relatively limited in vivo and clinical studies. Consequently, it is imperative for future investigations to prioritize and expand the scope of in vivo and clinical research. Additionally, it is strongly recommended to direct further research efforts towards toxicity studies and quality control of the plant. These studies will help bridge the current knowledge gaps and establish a solid basis for exploring the plant's potential uses in a clinical setting.


Assuntos
Diabetes Mellitus , Cebolas , Humanos , Etnofarmacologia , Medicina Tradicional , Extratos Vegetais/uso terapêutico , Extratos Vegetais/toxicidade , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/toxicidade , Diabetes Mellitus/tratamento farmacológico , Fitoterapia
3.
J Ethnopharmacol ; 324: 117784, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38253277

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Saussurea costus (Falc.) Lipschitz. is one of the most reputed medicinal plants as a traditional medicine in the Arab and Middle East regions in the treatment of thyroid disorders, however, more investigations are needed to fully understand its effectiveness and mechanism of action. AIM OF THE STUDY: The primary objective of the study was to assess the impact of Saussurea costus (COST) on the metabolic profiles of propylthiouracil (PTU)-induced hypothyroidism in rats. This involves a comprehensive examination of serum metabolites using UPLC/QqQ-MS analysis aiming to identify differential metabolites, elucidate underlying mechanisms, and evaluate the potential pharmacological effect of COST in restoring metabolic homeostasis. MATERIALS AND METHODS: Hypothyroidism was induced in female Sprague-Dawley rats by oral administration of propylthiouracil (PTU). UPLC/QqQ MS analysis of serum samples from normal, PTU, and PTU + COST rats was utilized for annotation of intrinsic metabolites with the aid of online Human metabolome database (HMDB) and extensive literature surfing. Multivariate statistical analyses, including orthogonal partial least squares discriminant analysis (OPLS-DA), discerned variations between the different groups. Serum levels of T3, T4 and TSH in addition to arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) levels in thyroid gland tissues; Phospholipase A2 group IIA (PLA2G2A), and lipoprotein lipase (LPL) in liver tissues were assessed by specific ELISA kits. Gene expression for key proteins of the primary evolved pathwayswere quantified by one-step qRT-PCR technique. Histopathological evaluation of thyroid gland tissue was performed by an investigator blinded to the experimental group using light microscope. RESULTS: Distinct clustering in multivariate statistical analysis models indicated significant variations in serum chemical profiles among normal, disease, and treated groups. VIP values guided the selection of differential metabolites, revealing significant changes in metabolite concentrations. Subsequent to COST treatment, 43 differential intrinsic metabolites exhibited a notable tendency to revert towards normal levels. Annotated metabolites, such as lysophosphatidylcholine (LPC), L-acetylcarnitine, gamma-glutamylserine, and others, showed differential regulation in response to PTU and subsequent S. costus treatment. Notably, 21 metabolites were associated with polyunsaturated fatty acids (PUFAs) biosynthesis, arachidonic acid (ARA) metabolism, and glycerophospholipid metabolism exhibited significant changes on conducting metabolic pathway analysis. CONCLUSIONS: COST improves PTU-induced hypothyroidism by regulating biosynthesis of PUFAs signified by n-3/n-6, ARA and glycerophospholipid metabolism. The study provides us a novel mechanism to explain the improvement of hypothyroidism and associated dyslipidemia by COST, depicts a metabolic profile of hypothyroidism, and gives us another point cut for further exploring the biomarkers and pathogenesis of hypothyroidism.


Assuntos
Costus , Hipotireoidismo , Saussurea , Humanos , Ratos , Animais , Propiltiouracila/toxicidade , Ratos Sprague-Dawley , Hipotireoidismo/induzido quimicamente , Hipotireoidismo/tratamento farmacológico , Extratos Vegetais/efeitos adversos , Glicerofosfolipídeos , Ácidos Araquidônicos/efeitos adversos
4.
J Ethnopharmacol ; : 118583, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39013541

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Liver and breast cancers are the most dominant cancer types with high occurrence rates. Artichoke (Cynara scolymus L.) has been reputed for its traditional use in alleviating many liver and gallbladder ailments beside its anticancer activity against various types of cancer cells. AIM OF THE STUDY: To demonstrate detailed chemical matrices of the different plant parts and evaluate their cytotoxic activities aiming to unveil the relationship between these activities and the intrinsic metabolites using metabolomic studies, in-vitro experiments and network pharmacology. MATERIALS AND METHODS: Chemical profiling of extracts from the different plant parts (stems, leaves, bracts and receptacles) was performed using HPLC/QqQ/MS followed by unsupervised chemometric studies. In-vitro cytotoxic potentials of the extracts were evaluated on breast and liver cancer cell line then an OPLS study using linear regression was conducted. Consequently, a network pharmacology analysis on the most bioactive plant organ was applied. RESULTS: Unsupervised chemometric analysis revealed that kaempferol-3-O-α-L-rhamnopyranoside-7-O-ß-D-galacturonopyranoside, chrysoeriol-7-rutinoside and 1-caffeoylquinic acid were responsible for the segregation of the bract (CSB) segregated from the rest of the plant organs. Interestingly, CSB extract possessed the highest potential in-vitro cytotoxic activity against both liver and breast cancer cells (IC50 = 1.65 and 1.77 µg/mL). As expected, the aforementioned biomarkers were observed to be the discriminatory cytotoxic metabolites in the constructed supervised chemometric model. Network pharmacology analysis on CSB revealed 27 liver cancer-related metabolites of which, 1-caffeoylquinic acid was the most enriched one contributing to 13% of the total interactions. Furthermore, 38 target genes were involved, the most enriched of which were Aldo-keto reductase family 1 member B1 (AKR1B10) and interleukin-2 (IL-2). KEGG pathway analysis unveiled 23 significantly related pathways including metabolic pathways that possessed the lowest p-value (1.6E-5). CONCLUSION: The findings demonstrated that CSB is a significant source of cytotoxic metabolites against breast cancer and liver cancer cell lines, hence, drawing attention to the pharmaceutical and medicinal value of this negligible plant organ and paving the route for insightful research into its exact pharmacological cytotoxic mechanisms.

5.
BMC Complement Med Ther ; 24(1): 271, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010091

RESUMO

BACKGROUND: Onion waste was reported to be a valuable source of bioactive constituents with potential health-promoting benefits. This sparked a surge of interest among scientists for its valorization. This study aims to investigate the chemical profiles of peel and root extracts of four onion cultivars (red, copper-yellow, golden yellow and white onions) and evaluate their erectogenic and anti-inflammatory potentials. METHODS: UPLC-QqQ-MS/MS analysis and chemometric tools were utilized to determine the chemical profiles of onion peel and root extracts. The erectogenic potential of the extracts was evaluated using the PDE-5 inhibitory assay, while their anti-inflammatory activity was determined by identifying their downregulating effect on the gene expression of IL-6, IL-1ß, IFN-γ, and TNF-α in LPS-stimulated WBCs. RESULTS: A total of 103 metabolites of diverse chemical classes were identified, with the most abundant being flavonoids. The organ's influence on the chemical profiles of the samples outweighed the influence of the cultivar, as evidenced by the close clustering of samples from the same organ compared to the distinct separation of root and peel samples from the same cultivar. Furthermore, the tested extracts demonstrated promising PDE-5 and anti-inflammatory potentials and effectively suppressed the upregulation of pro-inflammatory markers in LPS-stimulated WBCs. The anti-inflammatory activities exerted by peel samples surpassed those of root samples, highlighting the importance of selecting the appropriate organ to maximize activity. The main metabolites correlated with PDE-5 inhibition were cyanidin 3-O-(malonyl-acetyl)-glucoside and quercetin dimer hexoside, while those correlated with IL-1ß inhibition were γ-glutamyl-methionine sulfoxide, γ-glutamyl glutamine, sativanone, and stearic acid. Taxifolin, 3'-hydroxymelanettin, and oleic acid were highly correlated with IL-6 downregulation, while quercetin 4'-O-glucoside, isorhamnetin 4'-O-glucoside, and p-coumaroyl glycolic acid showed the highest correlation to IFN-γ and TNF-α inhibition. CONCLUSION: This study provides a fresh perspective on onion waste as a valuable source of bioactive constituents that could serve as the cornerstone for developing new, effective anti-PDE-5 and anti-inflammatory drug candidates.


Assuntos
Anti-Inflamatórios , Metabolômica , Cebolas , Extratos Vegetais , Cebolas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Inflamatórios/farmacologia , Humanos , Raízes de Plantas/química , Espectrometria de Massas em Tandem
6.
J Ethnopharmacol ; 291: 115038, 2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35151836

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Red sage (Lantana camara L.) (Verbenaceae) is a widely spread plant that was traditionally used in Brazil, India, Kenya, Thailand, Mexico, Nigeria, Australia and Southeast Asia for treating several ailments including rheumatism and leprosy. Despite its historical role in relieving respiratory diseases, limited studies progressed to the plant's probable inhibition to respiratory viruses especially after the striking spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. AIM OF THE STUDY: This study aimed to investigate the inhibitory activity of different L. camara cultivars to SARS-CoV-2, that was not previously inspected, and clarify their mechanisms of action in the metabolomics viewpoint, and to determine the biomarkers that are related to such activity using UPLC-MS/MS coupled to in vitro-studies and chemometric analysis. MATERIALS AND METHODS: Chemical profiling of different cultivars was accomplished via UPLC-MS/MS. Principle component analysis (PCA) and orthogonal projection to latent structures (OPLS) models were built using SIMCA® (multivariate data analysis software). Cytotoxicity and COVID-19 inhibitory activity testing were done followed by TaqMan Real-time RT-PCR (Reverse transcription polymerase chain reaction) assay that aimed to study extracts' effects on RNA-dependent RNA polymerase (RdRp) and E-genes expression levels. Detected biomarkers from OPLS analysis were docked into potential targets pockets to investigate their possible interaction patterns using Schrodinger® suite. RESULTS: UPLC-MS/MS analysis of different cultivars yielded 47 metabolites, most of them are triterpenoids and flavonoids. PCA plots revealed that inter-cultivar factor has no pronounced effect on the chemical profiles of extracts except for L. camara, cultivar Drap d'or flowers and leaves extracts as well as for L. camara cv Chelsea gem leaves extract. Among the tested extracts, flowers and leaves extracts of L. camara cv Chelsea gem, flowers extracts of L. camara cv Spreading sunset and L. camara cv Drap d'or showed the highest selectivity indices scoring 12.3, 10.1, 8.6 and 7.8, respectively, indicating their relative high safety and efficacy. Leaves and flowers extracts of L. camara cv Chelsea gem, flowers extracts of L. camara cv Spreading sunset and L. camara cv Drap d'or were the most promising inhibitors to viral plaques exhibiting IC50 values of 3.18, 3.67, 4.18 and 5.01 µg/mL, respectively. This was incremented by OPLS analysis that related their promising COVID-19 inhibitory activities to the presence of twelve biomarkers. Inhibiting the expression of RdRp gene is the major mechanism behind the antiviral activity of most extracts at almost all concentration levels. Molecular docking of the active biomarkers against RdRp revealed that isoverbascoside, luteolin-7,4'-O-diglucoside, camarolic acid and lantoic acid exhibited higher docking scores of -11.378, -10.64, -6.72 and -6.07 kcal/mol, respectively, when compared to remdesivir (-5.75 kcal/mol), thus these four compounds can serve as promising anti-COVID-19 candidates. CONCLUSION: Flowers and leaves extracts of four L. camara cultivars were recognized as rich sources of phytoconstituents possessing anti-COVID-19 activity. Combination of UPLC-MS/MS and chemometrics is a promising approach to detect chemical composition differences among the cultivars and correlate them to COVID-19 inhibitory activities allowing to pinpoint possible biomarkers. Further in-vitro and in-vivo studies are required to verify their activity.


Assuntos
Tratamento Farmacológico da COVID-19 , Lantana , Biomarcadores/análise , Quimiometria , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Lantana/química , Simulação de Acoplamento Molecular , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Folhas de Planta/química , SARS-CoV-2 , Espectrometria de Massas em Tandem
7.
Sci Rep ; 12(1): 14828, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050423

RESUMO

Lantana camara L. is widely used in folk medicine for alleviation of inflammatory disorders, but studies that proved this folk use and that revealed the molecular mechanism of action in inflammation mitigation are not enough. Therefore, this study aimed to identify L. camara phytoconstituents using UPLC-MS/MS and explain their multi-level mechanism of action in inflammation alleviation using network pharmacology analysis together with molecular docking and in vitro testing. Fifty-seven phytoconstituents were identified in L. camara extract, from which the top hit compounds related to inflammation were ferulic acid, catechin gallate, myricetin and iso-ferulic acid. Whereas the most enriched inflammation related genes were PRKCA, RELA, IL2, MAPK 14 and FOS. Furthermore, the most enriched inflammation-related pathways were PI3K-Akt and MAPK signaling pathways. Molecular docking revealed that catechin gallate possessed the lowest binding energy against PRKCA, RELA and IL2, while myricetin had the most stabilized interaction against MAPK14 and FOS. In vitro cytotoxicity and anti-inflammatory testing indicated that L. camara extract is safer than piroxicam and has a strong anti-inflammatory activity comparable to it. This study is a first step in proving the folk uses of L. camara in palliating inflammatory ailments and institutes the groundwork for future clinical studies.


Assuntos
Lantana , Metabolômica , Extratos Vegetais , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Humanos , Inflamação/tratamento farmacológico , Interleucina-2 , Lantana/química , Lantana/metabolismo , Metabolômica/métodos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectrometria de Massas em Tandem
8.
J Ethnopharmacol ; 224: 359-372, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-29909120

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Aromatase enzyme (CYP19) is widely known as a critical target protein for treating hormone-dependent breast cancer. Natural products from traditional medicinal plants continue to be an active source of aromatase inhibitors. Meanwhile, high cost of experimental work and low hit rate associated with HTS have stimulated the implementation of in-silico virtual screening to resolve these pitfalls, where coupling of both classical wet lab procedure and VS may offer a more deepened access to bioactive compounds with less work and time waste. AIM OF THE STUDY: In this work, a sequential structure-based and ligand-based virtual screening strategy was utilized for investigating an in-house database of 1720 phytochemical constituents of 29 medicinal plants and natural products used in traditional Egyptian medicine to search for compounds with the potential to be used as inhibitors of the human aromatase enzyme. MATERIALS AND METHODS: The suggested strategy included using Glide docking with its feature 'extra precision (XP)' for carrying out structure-based virtual screening (SBVS) where the resulting hits were further promoted to ligand-based virtual screening (LBVS) through the development of two pharmacophore and QSAR models; one for steroidal and the other for non-steroidal aromatase inhibitors. RESULTS: The combined results revealed that Artemisia annua, Zingiber officinale, Cicer arietinum, Annona muricata and Vitex agnus castus were the top scoring plants in terms of in-silico activity scores, respectively. The hydro-alcoholic extracts and different solvent fractions of the top scoring plants were subsequently tested experimentally for their aromatase inhibitory activity, by the aid of in-vitro fluorometric assay. The rank ordering of the activities for the plants agreed with the ordering predicted on the basis of SBVS and LBVS workflow implemented. CONCLUSION: The suggested strategy provides a reliable means of prospecting in-silico screening of natural products databases in the search for new dug leads as aromatase inhibitors. The hits so obtained can then be subjected to further phytochemical studies, to isolate and identify suitable compounds for further in-vitro testing.


Assuntos
Inibidores da Aromatase/farmacologia , Descoberta de Drogas/métodos , Magnoliopsida , Extratos Vegetais/farmacologia , Aromatase/metabolismo , Simulação por Computador , Bases de Dados Factuais , Egito , Humanos , Medicina Tradicional , Simulação de Acoplamento Molecular , Plantas Medicinais , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa