Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 18(15): 10623-9, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27035406

RESUMO

Electron ionization of helium droplets doped with sodium, potassium or cesium results in doubly and, for cesium, triply charged cluster ions. The smallest observable doubly charged clusters are Na9(2+), K11(2+), and Cs9(2+); they are a factor two to three smaller than reported previously. The size of sodium and potassium dications approaches the Rayleigh limit nRay for which the fission barrier is calculated to vanish, i.e. their fissilities are close to 1. Cesium dications are even smaller than nRay, implying that their fissilities have been significantly overestimated. Triply charged cesium clusters as small as Cs19(3+) are observed; they are a factor 2.6 smaller than previously reported. Mechanisms that may be responsible for enhanced formation of clusters with high fissilities are discussed.

2.
J Chem Phys ; 145(18): 181101, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27846692

RESUMO

Alkali metal atoms and small alkali clusters are classic heliophobes and when in contact with liquid helium they reside in a dimple on the surface. Here we show that alkalis can be induced to submerge into liquid helium when a highly polarizable co-solute, C60, is added to a helium nanodroplet. Evidence is presented that shows that all sodium clusters, and probably single Na atoms, enter the helium droplet in the presence of C60. Even clusters of cesium, an extreme heliophobe, dissolve in liquid helium when C60 is added. The sole exception is atomic Cs, which remains at the surface.

3.
J Chem Phys ; 142(10): 104306, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25770539

RESUMO

The effects of interactions between He(-) and clusters of fullerenes in helium nanodroplets are described. Electron transfer from He(-) to (C60)n and (C70)n clusters results in the formation of the corresponding fullerene cluster dianions. This unusual double electron transfer appears to be concerted and is most likely guided by electron correlation between the two very weakly bound outer electrons in He(-). We suggest a mechanism which involves long range electron transfer followed by the conversion of He(+)into He2 (+), where formation of the He-He bond in He2 (+) releases sufficient kinetic energy for the cation and the dianion to escape their Coulombic attraction. By analogy with the corresponding dications, the observation of a threshold size of n ≥ 5 for formation of both (C60)n (2-) and (C70)n (2-) is attributed to Coulomb explosion rather than an energetic constraint. We also find that smaller dianions can be observed if water is added as a co-dopant. Other aspects of He(-) chemistry that are explored include its role in the formation of multiply charged fullerene cluster cations and the sensitivity of cluster dianion formation on the incident electron energy.

4.
Phys Chem Chem Phys ; 16(41): 22466-70, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25230760

RESUMO

The mechanism of ionization of helium droplets has been investigated in numerous reports but one observation has not found a satisfactory explanation: How are He(+) ions formed and ejected from undoped droplets at electron energies below the ionization threshold of the free atom? Does this path exist at all? A measurement of the ion yields of He(+) and He2(+) as a function of electron energy, electron emission current, and droplet size reveals that metastable He*(-) anions play a crucial role in the formation of free He(+) at subthreshold energies. The proposed model is testable.

5.
J Phys Chem A ; 118(33): 6553-9, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24818738

RESUMO

Electron attachment to CO2 embedded in superfluid He droplets leads to ionic complexes of the form (CO2)n(-) and (CO2)nO(-) and, at much lower intensities, He containing ions of the form Hem(CO2)nO(-). At low energies (<5 eV), predominantly the non-decomposed complexes (CO2)n(-) are formed via two resonance contributions, similar to electron attachment to pristine CO2 clusters. The significantly different shapes and relative resonance positions, however, indicate particular quenching and mediation processes in CO2@He. A series of further resonances in the energy range up to 67 eV can be assigned to electronic excitation of He and capture of the inelastically scattered electron generating (CO2)n(-) and two additional processes where an intermediately formed He* leads to the nonstoichiometric anions (CO2)nO(-).

6.
Carbon N Y ; 69: 206-220, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25843960

RESUMO

In spite of extensive investigations of ethylene adsorbed on graphite, bundles of nanotubes, and crystals of fullerenes, little is known about the existence of commensurate phases; they have escaped detection in almost all previous work. Here we present a combined experimental and theoretical study of ethylene adsorbed on free C60 and its aggregates. The ion yield of [Formula: see text] measured by mass spectrometry reveals a propensity to form a structurally ordered phase on monomers, dimers and trimers of C60 in which all sterically accessible hollow sites over carbon rings are occupied. Presumably the enhancement of the corrugation by the curvature of the fullerene surface favors this phase which is akin to a hypothetical 1 × 1 phase on graphite. Experimental data also reveal the number of molecules in groove sites of the C60 dimer through tetramer. The identity of the sites, adsorption energies and orientations of the adsorbed molecules are determined by molecular dynamics calculations based on quantum chemical potentials, as well as density functional theory. The decrease in orientational order with increasing temperature is also explored in the simulations whereas in the experiment it is impossible to vary the temperature.

7.
Int J Mass Spectrom ; 365-366: 200-205, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25844051

RESUMO

Helium nanodroplets are doped with carbon dioxide and ionized by electrons. Doubly charged cluster ions are, for the first time, identified based on their characteristic patterns of isotopologues. Thanks to the high mass resolution, large dynamic range, and a novel method to eliminate contributions from singly charged ions from the mass spectra, we are able to observe doubly charged cluster ions that are smaller than the ones reported in the past. The likely mechanism by which doubly charged ions are formed in doped helium droplets is discussed.

8.
Angew Chem Int Ed Engl ; 53(49): 13528-31, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25378098

RESUMO

The self-assembly of salt nanocrystals from chemical reactions inside liquid helium is reported for the first time. Reaction is initiated by an electron impacting a helium nanodroplet containing sodium atoms and SF6 molecules, leading to preferential production of energetically favorable structures based on the unit cell of crystalline NaF. These favorable structures are observed as magic number ions (anomalously intense peaks) in mass spectra and are seen in both cationic and anionic channels in mass spectra, for example, (NaF)n Na(+) and (NaF)n F(-) . In the case of anions the self-assembly is not directly initiated by electrons: the dominant process involves resonant electron-induced production of metastable electronically excited He(-) anions, which then initiate anionic chemistry by electron transfer.

9.
Angew Chem Int Ed Engl ; 53(50): 13794-7, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25296629

RESUMO

The formation of dianions in helium nanodroplets is reported for the first time. The fullerene cluster dianions (C60)n(2-) and (C70)n(2-) were observed by mass spectrometry for n≥5 when helium droplets containing the appropriate fullerene were subjected to electron impact at approximately 22 eV. A new mechanism for dianion formation is described, which involves a two-electron transfer from the metastable He(-) ion. As well as the prospect of studying other dianions at low temperature using helium nanodroplets, this work opens up the possibility of a wider investigation of the chemistry of He(-), a new electron-donating reagent.

10.
Phys Rev Lett ; 105(24): 243402, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21231525

RESUMO

We report the observation of the ejection of electrons caused by collisions of excited atoms with ions, rather than neutrals, leading to the production of doubly charged ions. Doping superfluid He droplets with methyl iodide and exposing them to electrons enhances the formation of doubly charged iodine atoms at the threshold for the production of two metastable He atoms. These observations point toward a novel ionization process where doubly charged ions are produced by sequential Penning ionization. In some cases, depending on the neutral target, the process also leads to a subsequent Coulomb explosion of the dopant.

11.
J Phys Chem Lett ; 5(14): 2444-2449, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25068008

RESUMO

Helium droplets provide the possibility to study phenomena at the very low temperatures at which quantum mechanical effects are more pronounced and fewer quantum states have significant occupation probabilities. Understanding the migration of either positive or negative charges in liquid helium is essential to comprehend charge-induced processes in molecular systems embedded in helium droplets. Here, we report the resonant formation of excited metastable atomic and molecular helium anions in superfluid helium droplets upon electron impact. Although the molecular anion is heliophobic and migrates toward the surface of the helium droplet, the excited metastable atomic helium anion is bound within the helium droplet and exhibits high mobility. The atomic anion is shown to be responsible for the formation of molecular dopant anions upon charge transfer and thus, we clarify the nature of the previously unidentified fast exotic negative charge carrier found in bulk liquid helium.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa