Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Math Biol ; 85(3): 29, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36102971

RESUMO

Invasive pest establishment is a pervasive threat to global ecosystems, agriculture, and public health. The recent establishment of the invasive spotted lanternfly in the northeastern United States has proven devastating to farms and vineyards, necessitating urgent development of population dynamical models and effective control practices. In this paper, we propose a stage-age-structured system of PDEs to model insect pest populations, in which underlying dynamics are dictated by ambient temperature through rates of development, fecundity, and mortality. The model incorporates diapause and non-diapause pathways, and is calibrated to experimental and field data on the spotted lanternfly. We develop a novel moving mesh method for capturing age-advection accurately, even for coarse discretization parameters. We define a one-year reproductive number ([Formula: see text]) from the spectrum of a one-year solution operator, and study its sensitivity to variations in the mean and amplitude of the annual temperature profile. We quantify assumptions sufficient to give rise to the low-rank structure of the solution operator characteristic of part of the parameter domain. We discuss establishment potential as it results from the pairing of a favorable [Formula: see text] value and transient population survival, and address implications for pest control strategies.


Assuntos
Ecossistema , Reprodução , Dinâmica Populacional , Saúde Pública , Temperatura
2.
Ecol Lett ; 22(4): 634-644, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30714671

RESUMO

Predicting population colonisations requires understanding how spatio-temporal changes in density affect dispersal. Density can inform on fitness prospects, acting as a cue for either habitat quality, or competition over resources. However, when escaping competition, high local density should only increase emigration if lower-density patches are available elsewhere. Few empirical studies on dispersal have considered the effects of density at the local and landscape scale simultaneously. To explore this, we analyze 5 years of individual-based data from an experimental introduction of wild guppies Poecilia reticulata. Natal dispersal showed a decrease in local density dependence as density at the landscape level increased. Landscape density did not affect dispersal among adults, but local density-dependent dispersal switched from negative (conspecific attraction) to positive (conspecific avoidance), as the colonisation progressed. This study demonstrates that densities at various scales interact to determine dispersal, and suggests that dispersal trade-offs differ across life stages.


Assuntos
Migração Animal , Ecossistema , Animais , Densidade Demográfica , Dinâmica Populacional
3.
Biol Lett ; 13(4)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28404819

RESUMO

Deimatic or 'startle' displays cause a receiver to recoil reflexively in response to a sudden change in sensory input. Deimatism is sometimes implicitly treated as a form of aposematism (unprofitability associated with a signal). However, the fundamental difference is, in order to provide protection, deimatism does not require a predator to have any learned or innate aversion. Instead, deimatism can confer a survival advantage by exploiting existing neural mechanisms in a way that releases a reflexive response in the predator. We discuss the differences among deimatism, aposematism, and forms of mimicry, and their ecological and evolutionary implications. We highlight outstanding questions critical to progress in understanding deimatism.


Assuntos
Comportamento Animal , Evolução Biológica , Reação de Fuga , Animais , Reflexo/fisiologia
4.
Proc Biol Sci ; 282(1806): 20150202, 2015 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-25854889

RESUMO

Large conspicuous eyespots on butterfly wings have been shown to deter predators. This has been traditionally explained by mimicry of vertebrate eyes, but recently the classic eye-mimicry hypothesis has been challenged. It is proposed that the conspicuousness of the eyespot, not mimicry, is what causes aversion due to sensory biases, neophobia or sensory overloads. We conducted an experiment to directly test whether the eye-mimicry or the conspicuousness hypothesis better explain eyespot efficacy. We used great tits (Parus major) as model predator, and tested their reaction towards animated images on a computer display. Birds were tested against images of butterflies without eyespots, with natural-looking eyespots, and manipulated spots with the same contrast but reduced resemblance to an eye, as well as images of predators (owls) with and without eyes. We found that mimetic eyespots were as effective as true eyes of owls and more efficient in eliciting an aversive response than modified, less mimetic but equally contrasting eyespots. We conclude that the eye-mimicry hypothesis explains our results better than the conspicuousness hypothesis and is thus likely to be an important mechanism behind the evolution of butterfly eyespots.


Assuntos
Mimetismo Biológico , Borboletas/fisiologia , Aves Canoras/fisiologia , Percepção Visual , Asas de Animais/fisiologia , Animais , Olho , Pigmentação
5.
Sci Rep ; 9(1): 463, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679660

RESUMO

Predation has driven the evolution of diverse adaptations for defence among prey, and one striking example is the deimatic display. While such displays can resemble, or indeed co-occur with, aposematic 'warning' signals, theory suggests deimatic displays may function independently of predator learning. The survival value of deimatic displays against wild predators has not been tested before. Here we used the mountain katydid Acripeza reticulata to test the efficacy of a putative deimatic display in the wild. Mountain katydids have a complex defence strategy; they are camouflaged at rest, but reveal a striking red-, blue-, and black-banded abdomen when attacked. We presented live katydids to sympatric (experienced) and allopatric (naive) natural predators, the Australian magpie Cracticus tibicen, and observed bird reactions and katydid behaviors and survival during repeated interactions. The efficacy of the katydids' defence differed with predator experience. Their survival was greatest when faced with naïve predators, which provided clear evidence of the protective value of the display. In contrast, katydid survival was consistently less likely when facing experienced predators. Our results suggest that sympatric predators have learned to attack and consume mountain katydids despite their complex defense, and that their post-attack display can be an effective deterrent, particularly against naïve predators. These results suggest that deimatism does not require predator learning to afford protection, but that a predator can learn to expect the display and subsequently avoid it or ignore it. That sympatric predators learn to ignore the defense is a possible explanation for the mountain katydid's counter-intuitive behavior of revealing warning colors only after tactile stimuli from predator attack.


Assuntos
Gryllidae , Comportamento Predatório , Animais , Austrália , Comportamento Animal
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa