Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Lett ; 27(3): e14396, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38456670

RESUMO

Trait-based ecology has already revealed main independent axes of trait variation defining trait spaces that summarize plant adaptive strategies, but often ignoring intraspecific trait variability (ITV). By using empirical ITV-level data for two independent dimensions of leaf form and function and 167 species across five habitat types (coastal dunes, forests, grasslands, heathlands, wetlands) in the Italian peninsula, we found that ITV: (i) rotated the axes of trait variation that define the trait space; (ii) increased the variance explained by these axes and (iii) affected the functional structure of the target trait space. However, the magnitude of these effects was rather small and depended on the trait and habitat type. Our results reinforce the idea that ITV is context-dependent, calling for careful extrapolations of ITV patterns across traits and spatial scales. Importantly, our study provides a framework that can be used to start integrating ITV into trait space analyses.


Assuntos
Ecossistema , Florestas , Folhas de Planta , Fenótipo , Ecologia
2.
New Phytol ; 241(4): 1476-1491, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38031641

RESUMO

Species are altering their phenology to track warming temperatures. In forests, understorey plants experience tree canopy shading resulting in light and temperature conditions, which strongly deviate from open habitats. Yet, little is known about understorey phenology responses to forest microclimates. We recorded flowering onset, peak, end and duration of 10 temperate forest understorey plant species in two mesocosm experiments to understand how phenology is affected by sub-canopy warming and how this response is modulated by illumination, which is related to canopy change. Furthermore, we investigated whether phenological sensitivities can be explained by species' characteristics, such as thermal niche. We found a mean advance of flowering onset of 7.1 d per 1°C warming, more than previously reported in studies not accounting for microclimatic buffering. Warm-adapted species exhibited greater advances. Temperature sensitivity did not differ between early- and later-flowering species. Experimental illumination did not significantly affect species' phenological temperature sensitivities, but slightly delayed flowering phenology independent from warming. Our study suggests that integrating sub-canopy temperature and light availability will help us better understand future understorey phenology responses. Climate warming together with intensifying canopy disturbances will continue to drive phenological shifts and potentially disrupt understorey communities, thereby affecting forest biodiversity and functioning.


Assuntos
Florestas , Iluminação , Estações do Ano , Ecossistema , Temperatura , Plantas , Mudança Climática
3.
New Phytol ; 241(5): 2287-2299, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38126264

RESUMO

Global change has accelerated local species extinctions and colonizations, often resulting in losses and gains of evolutionary lineages with unique features. Do these losses and gains occur randomly across the phylogeny? We quantified: temporal changes in plant phylogenetic diversity (PD); and the phylogenetic relatedness (PR) of lost and gained species in 2672 semi-permanent vegetation plots in European temperate forest understories resurveyed over an average period of 40 yr. Controlling for differences in species richness, PD increased slightly over time and across plots. Moreover, lost species within plots exhibited a higher degree of PR than gained species. This implies that gained species originated from a more diverse set of evolutionary lineages than lost species. Certain lineages also lost and gained more species than expected by chance, with Ericaceae, Fabaceae, and Orchidaceae experiencing losses and Amaranthaceae, Cyperaceae, and Rosaceae showing gains. Species losses and gains displayed no significant phylogenetic signal in response to changes in macroclimatic conditions and nitrogen deposition. As anthropogenic global change intensifies, temperate forest understories experience losses and gains in specific phylogenetic branches and ecological strategies, while the overall mean PD remains relatively stable.


Les changements globaux accélèrent les processus de colonisation et d'extinction locales d'espèces, aboutissant à des gains ou à des pertes de lignées évolutives uniques. Ces gains et pertes se produisent-ils de manière aléatoire dans l'arbre phylogénétique ? Nous avons mesuré: les changements de diversité phylogénétique; et la parenté phylogénétique des espèces végétales gagnées ou perdues dans 2672 placettes semi-permanentes disposées dans le sous-bois de forêts tempérées d'Europe sur une période moyenne de 40 ans. Une fois corrigée par la richesse spécifique, la diversité phylogénétique a légèrement augmenté au cours du temps dans les différentes placettes. Les espèces perdues ont une plus grande parenté phylogénétique que les espèces gagnées. Les espèces gagnées sont donc issues d'un plus grand nombre de lignées évolutives que les espèces perdues. Certaines lignées ont gagné ou perdu davantage d'espèces que ce qui est prédit par le hasard : les Ericaceae, les Fabaceae et les Orchidaceae ayant davantage perdu, tandis que les Amaranthaceae, les Cyperaceae, et les Rosaceae ont plus gagné. Il n'y a pas de signal phylogénétique des gains ou pertes d'espèces en réponse aux changements de conditions macroclimatiques ou des dépôts atmosphériques d'azote. Alors que les changements globaux d'origine anthropique s'intensifient, les sous-bois des forêts tempérées connaissent des gains et des pertes de certaines lignées évolutives et de certaines stratégies écologiques, sans que la diversité phylogénétique moyenne ne s'en trouve véritablement affectée.


El cambio global ha acelerado las extinciones y colonizaciones a escala local, lo que a menudo ha supuesto pérdidas y ganancias de linajes evolutivos con características únicas. Ahora bien, ¿estas pérdidas y ganancias ocurren aleatoriamente a lo largo de la filogenia? Cuantificamos: los cambios temporales en la diversidad filogenética de las plantas; y la relación filogenética de las especies perdidas y ganadas en 2.672 parcelas de vegetación semipermanente en sotobosques templados europeos y re-muestreadas durante un período promedio de 40 años. Al controlar por las diferencias en la riqueza de especies, la diversidad filogenética aumentó ligeramente con el tiempo y entre parcelas. Además, las especies perdidas dentro de las parcelas exhibieron un mayor grado de relación filogenética que las especies ganadas. Esto implica que las especies ganadas se originaron en un conjunto de linajes evolutivos más diversos que las especies perdidas. Ciertos linajes también perdieron y ganaron más especies de las esperadas aleatoriamente: Ericaceae, Fabaceae y Orchidaceae experimentaron pérdidas y Amaranthaceae, Cyperaceae y Rosaceae mostraron ganancias. Las pérdidas y ganancias de especies no mostraron ninguna señal filogenética significativa en respuesta a los cambios en las condiciones macro-climáticas y la deposición de nitrógeno. A medida que se intensifica el cambio global antropogénico, los sotobosques temperados experimentan pérdidas y ganancias en ramas filogenéticas y estrategias ecológicas específicas, mientras que la diversidad filogenética media general permanece relativamente estable.


Assuntos
Biodiversidade , Nitrogênio , Filogenia , Mudança Climática , Florestas , Plantas
4.
Glob Chang Biol ; 30(4): e17266, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38533756

RESUMO

Climatic drivers alone do not adequately explain the regional variation in budburst timing in deciduous forests across Europe. Stand-level factors, such as tree species richness, might affect budburst timing by creating different microclimates under the same site macroclimate. We assessed different phases of the spring phenology (start, midpoint, end, and overall duration of the budburst period) of four important European tree species (Betula pendula, Fagus sylvatica, Quercus robur and Tilia cordata) in monocultures and four-species mixture stands of a common garden tree biodiversity experiment in Belgium (FORBIO) in 2021 and 2022. Microclimatic differences between the stands in terms of bud chilling, temperature forcing, and soil temperature were considerable, with four-species mixtures being generally colder than monocultures in spring, but not in winter. In the colder spring of 2021, at the stand level, the end of the budburst period was advanced, and its overall duration shortened, in the four-species mixtures. At species level, this response was significant for F. sylvatica. In the warmer spring of 2022, advances in spring phenology in four-species stands were observed again in F. sylvatica and, less markedly, in B. pendula but without a general response at the stand level. Q. robur showed specific patterns with delayed budburst start in 2021 in the four-species mixtures and very short budburst duration for all stands in 2022. Phenological differences between monocultures and four-species mixtures were linked to microclimatic differences in light availability rather than in temperature as even comparatively colder microclimates showed an advanced phenology. Compared to weather conditions, tree species richness had a lower impact on budburst timing, but this impact can be of importance for key species like F. sylvatica and colder springs. These results indicate that forest biodiversity can affect budburst phenology, with wider implications, especially for forest- and land surface models.


Assuntos
Temperatura Baixa , Árvores , Árvores/fisiologia , Temperatura , Estações do Ano , Florestas , Folhas de Planta/fisiologia
5.
Glob Chang Biol ; 30(1): e17064, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273565

RESUMO

Climate change is pushing species towards and potentially beyond their critical thermal limits. The extent to which species can cope with temperatures exceeding their critical thermal limits is still uncertain. To better assess species' responses to warming, we compute the warming tolerance (ΔTniche ) as a thermal vulnerability index, using species' upper thermal limits (the temperature at the warm limit of their distribution range) minus the local habitat temperature actually experienced at a given location. This metric is useful to predict how much more warming species can tolerate before negative impacts are expected to occur. Here we set up a cross-continental transplant experiment involving five regions distributed along a latitudinal gradient across Europe (43° N-61° N). Transplant sites were located in dense and open forests stands, and at forest edges and in interiors. We estimated the warming tolerance for 12 understory plant species common in European temperate forests. During 3 years, we examined the effects of the warming tolerance of each species across all transplanted locations on local plant performance, in terms of survival, height, ground cover, flowering probabilities and flower number. We found that the warming tolerance (ΔTniche ) of the 12 studied understory species was significantly different across Europe and varied by up to 8°C. In general, ΔTniche were smaller (less positive) towards the forest edge and in open stands. Plant performance (growth and reproduction) increased with increasing ΔTniche across all 12 species. Our study demonstrated that ΔTniche of understory plant species varied with macroclimatic differences among regions across Europe, as well as in response to forest microclimates, albeit to a lesser extent. Our findings support the hypothesis that plant performance across species decreases in terms of growth and reproduction as local temperature conditions reach or exceed the warm limit of the focal species.


Assuntos
Mudança Climática , Florestas , Ecossistema , Europa (Continente) , Flores , Temperatura , Plantas
6.
Glob Chang Biol ; 30(1): e17086, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273496

RESUMO

Plant communities are being exposed to changing environmental conditions all around the globe, leading to alterations in plant diversity, community composition, and ecosystem functioning. For herbaceous understorey communities in temperate forests, responses to global change are postulated to be complex, due to the presence of a tree layer that modulates understorey responses to external pressures such as climate change and changes in atmospheric nitrogen deposition rates. Multiple investigative approaches have been put forward as tools to detect, quantify and predict understorey responses to these global-change drivers, including, among others, distributed resurvey studies and manipulative experiments. These investigative approaches are generally designed and reported upon in isolation, while integration across investigative approaches is rarely considered. In this study, we integrate three investigative approaches (two complementary resurvey approaches and one experimental approach) to investigate how climate warming and changes in nitrogen deposition affect the functional composition of the understorey and how functional responses in the understorey are modulated by canopy disturbance, that is, changes in overstorey canopy openness over time. Our resurvey data reveal that most changes in understorey functional characteristics represent responses to changes in canopy openness with shifts in macroclimate temperature and aerial nitrogen deposition playing secondary roles. Contrary to expectations, we found little evidence that these drivers interact. In addition, experimental findings deviated from the observational findings, suggesting that the forces driving understorey change at the regional scale differ from those driving change at the forest floor (i.e., the experimental treatments). Our study demonstrates that different approaches need to be integrated to acquire a full picture of how understorey communities respond to global change.


Assuntos
Ecossistema , Florestas , Árvores , Plantas , Nitrogênio
7.
Ecol Lett ; 26(12): 2043-2055, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37788337

RESUMO

Species distributions are conventionally modelled using coarse-grained macroclimate data measured in open areas, potentially leading to biased predictions since most terrestrial species reside in the shade of trees. For forest plant species across Europe, we compared conventional macroclimate-based species distribution models (SDMs) with models corrected for forest microclimate buffering. We show that microclimate-based SDMs at high spatial resolution outperformed models using macroclimate and microclimate data at coarser resolution. Additionally, macroclimate-based models introduced a systematic bias in modelled species response curves, which could result in erroneous range shift predictions. Critically important for conservation science, these models were unable to identify warm and cold refugia at the range edges of species distributions. Our study emphasizes the crucial role of microclimate data when SDMs are used to gain insights into biodiversity conservation in the face of climate change, particularly given the growing policy and management focus on the conservation of refugia worldwide.


Assuntos
Florestas , Microclima , Árvores , Plantas , Biodiversidade , Mudança Climática , Ecossistema
8.
Glob Chang Biol ; 29(11): 2886-2892, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37128754

RESUMO

Microclimate research gained renewed interest over the last decade and its importance for many ecological processes is increasingly being recognized. Consequently, the call for high-resolution microclimatic temperature grids across broad spatial extents is becoming more pressing to improve ecological models. Here, we provide a new set of open-access bioclimatic variables for microclimate temperatures of European forests at 25 × 25 m2 resolution.


Assuntos
Microclima , Árvores , Temperatura , Florestas , Ecossistema
9.
Ann Bot ; 131(3): 411-422, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36546703

RESUMO

BACKGROUND AND AIMS: Climate-change induced warmer spring temperatures advance tree leaf-out and result in earlier shading of the forest floor. Climate change also leads to more frequent droughts. Forest understorey herbs may respond to these environmental changes by varying traits at different hierarchical levels of organization. While trait mean variation at the inter-individual level in response to environmental changes is well-studied, little is known about how variation at the intra-individual level responds. METHODS: We sampled genets of the forest understorey herb Galium odoratum from 21 populations in three regions in Germany, varying in microclimatic conditions. The genets were transplanted into a common garden, where we applied shading and drought treatments. We measured plant height and leaf length and width, and calculated the coefficient of variation (CV) at different hierarchical levels: intra-population, intra-genet, intra-ramet and intra-shoot. KEY RESULTS: Variance partitioning showed that intra-shoot CV represented most of the total variation, followed by intra-ramet CV. We found significant variation in CV of plant height and leaf width among populations of origin, indicating that CV is at least partly genetically based. The soil temperature at populations' origins correlated negatively with CV in plant height, suggesting adaptation to local conditions. Furthermore, we observed that early shade led to increased intra-ramet CV in leaf length, while drought reduced intra-shoot CV in leaf width. Finally, intra-shoot leaf width mean and CV were independent under control conditions but correlated under drought. CONCLUSIONS: Our experimental results reveal correlations of intra-individual variation with soil temperature, indicating that intra-individual variation can evolve and may be adaptive. Intra-individual variation responded plastically to drought and shading, suggesting functional changes to improve light capture and reduce evapotranspiration. In conclusion, intra-individual variation makes up the majority of total trait variation in this species and can play a key role in plant adaptation to climatic change.


Assuntos
Secas , Galium , Animais , Viverridae , Florestas , Folhas de Planta/fisiologia , Plantas , Solo
10.
Ecol Appl ; 33(4): e2851, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36938961

RESUMO

Forest fragmentation increases the amount of edges in the landscape. Differences in wind, radiation, and vegetation structure create edge-to-interior gradients in forest microclimate, and these gradients are likely to be more pronounced during droughts and heatwaves. Although the effects of climate extremes on edge influences have potentially strong and long-lasting impacts on forest understory biodiversity, they are not well understood and are not often considered in management and landscape planning. Here we used a novel method of retrospectively quantifying growth to assess biologically relevant edge influences likely caused by microclimate using Hylocomium splendens, a moss with annual segments. We examined how spatio-temporal variation in drought across 3 years and 46 sites in central Sweden, affected the depth and magnitude of edge influences. We also investigated whether edge effects during drought were influenced by differences in forest structure. Edge effects were almost twice as strong in the drought year compared to the non-drought years, but we did not find clear evidence that they penetrated deeper into the forest in the drought year. Edge influences were also greater in areas that had fewer days with rain during the drought year. Higher levels of forest canopy cover and tree height buffered the magnitude of edge influence in times of drought. Our results demonstrate that edge effects are amplified by drought, suggesting that fragmentation effects are aggravated when droughts become more frequent and severe. Our results suggest that dense edges and buffer zones with high canopy cover can be important ways to mitigate negative drought impacts in forest edges.


Assuntos
Briófitas , Florestas , Estudos Retrospectivos , Árvores , Clima , Biodiversidade , Secas
11.
Ecol Lett ; 25(2): 466-482, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34866301

RESUMO

Species turnover is ubiquitous. However, it remains unknown whether certain types of species are consistently gained or lost across different habitats. Here, we analysed the trajectories of 1827 plant species over time intervals of up to 78 years at 141 sites across mountain summits, forests, and lowland grasslands in Europe. We found, albeit with relatively small effect sizes, displacements of smaller- by larger-ranged species across habitats. Communities shifted in parallel towards more nutrient-demanding species, with species from nutrient-rich habitats having larger ranges. Because these species are typically strong competitors, declines of smaller-ranged species could reflect not only abiotic drivers of global change, but also biotic pressure from increased competition. The ubiquitous component of turnover based on species range size we found here may partially reconcile findings of no net loss in local diversity with global species loss, and link community-scale turnover to macroecological processes such as biotic homogenisation.


Assuntos
Biodiversidade , Pradaria , Ecossistema , Florestas , Plantas
12.
New Phytol ; 235(4): 1615-1628, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35514157

RESUMO

Many plant species produce multiple leaf flushes during the growing season, which might have major consequences for within-plant variation in chemistry and species interactions. Yet, we lack a theoretical or empirical framework for how differences among leaf flushes might shape variation in damage by insects and diseases. We assessed the impact of leaf flush identity on leaf chemistry, insect attack and pathogen infection on the pedunculate oak Quercus robur by sampling leaves from each leaf flush in 20 populations across seven European countries during an entire growing season. The first leaf flush had higher levels of primary compounds, and lower levels of secondary compounds, than the second flush, whereas plant chemistry was highly variable in the third flush. Insect attack decreased from the first to the third flush, whereas infection by oak powdery mildew was lowest on leaves from the first flush. The relationship between plant chemistry, insect attack and pathogen infection varied strongly among leaf flushes and seasons. Our findings demonstrate the importance of considering differences among leaf flushes for our understanding of within-tree variation in chemistry, insect attack and disease levels, something particularly relevant given the expected increase in the number of leaf flushes with climate change.


Assuntos
Quercus , Árvores , Animais , Insetos , Folhas de Planta/química , Estações do Ano
13.
New Phytol ; 233(1): 219-235, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34664731

RESUMO

Forests harbour large spatiotemporal heterogeneity in canopy structure. This variation drives the microclimate and light availability at the forest floor. So far, we do not know how light availability and sub-canopy temperature interactively mediate the impact of macroclimate warming on understorey communities. We therefore assessed the functional response of understorey plant communities to warming and light addition in a full factorial experiment installed in temperate deciduous forests across Europe along natural microclimate, light and macroclimate gradients. Furthermore, we related these functional responses to the species' life-history syndromes and thermal niches. We found no significant community responses to the warming treatment. The light treatment, however, had a stronger impact on communities, mainly due to responses by fast-colonizing generalists and not by slow-colonizing forest specialists. The forest structure strongly mediated the response to light addition and also had a clear impact on functional traits and total plant cover. The effects of short-term experimental warming were small and suggest a time-lag in the response of understorey species to climate change. Canopy disturbance, for instance due to drought, pests or logging, has a strong and immediate impact and particularly favours generalists in the understorey in structurally complex forests.


Assuntos
Florestas , Microclima , Mudança Climática , Plantas , Temperatura , Árvores
14.
Glob Chang Biol ; 28(3): 1103-1118, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34679209

RESUMO

Understanding forest understorey community response to environmental change, including management actions, is vital given the understorey's importance for biodiversity conservation and ecosystem functioning. The Natural World Heritage Hyrcanian temperate forests (Iran) provide an ideal template for furnishing an appreciation of how management actions can mitigate undesired climate change effects, due to the forests' broad environmental gradients, isolation from colonization sources and varied light environments. We used records of 95 understorey plant species from 512 plots to model their probability of occurrence as a function of contemporary climate and soil variables, and canopy cover. For 65 species with good predictive accuracy, we then projected two climate scenarios in the context of either increasing or decreasing canopy cover, to assess whether overstorey management could mitigate or aggravate climate change effects. Climate variables were the most important predictors for the distribution of all species. Soil and canopy cover varied in importance depending on understorey growth form. Climate change was projected to negatively affect future probabilities of occurrence. However, management, here represented by canopy cover change, is predicted to modify this trajectory for some species groups. Models predict increases in light-adapted and generalist forbs with reduced canopy cover, while graminoids and ferns still decline. Increased canopy cover is projected to buffer an otherwise significant decreasing response of cold-adapted species to climate change. However, increasing canopy cover is not projected to buffer the predicted negative impact of climate change on shade-adapted forest specialists. Inconsistent responses of different species and/or growth forms to climate change and canopy cover reflect their complicated life histories and habitat preferences. Canopy cover management may help prevent the climate change induced loss of some important groups for biodiversity conservation. However, for shade-adapted forest specialists, our results imply a need to adopt other conservation measures in the face of anticipated climate change.


Assuntos
Ecossistema , Florestas , Biodiversidade , Mudança Climática , Irã (Geográfico) , Plantas
15.
Glob Chang Biol ; 28(24): 7340-7352, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36062391

RESUMO

Current climate change aggravates human health hazards posed by heat stress. Forests can locally mitigate this by acting as strong thermal buffers, yet potential mediation by forest ecological characteristics remains underexplored. We report over 14 months of hourly microclimate data from 131 forest plots across four European countries and compare these to open-field controls using physiologically equivalent temperature (PET) to reflect human thermal perception. Forests slightly tempered cold extremes, but the strongest buffering occurred under very hot conditions (PET >35°C), where forests reduced strong to extreme heat stress day occurrence by 84.1%. Mature forests cooled the microclimate by 12.1 to 14.5°C PET under, respectively, strong and extreme heat stress conditions. Even young plantations reduced those conditions by 10°C PET. Forest structure strongly modulated the buffering capacity, which was enhanced by increasing stand density, canopy height and canopy closure. Tree species composition had a more modest yet significant influence: that is, strongly shade-casting, small-leaved evergreen species amplified cooling. Tree diversity had little direct influences, though indirect effects through stand structure remain possible. Forests in general, both young and mature, are thus strong thermal stress reducers, but their cooling potential can be even further amplified, given targeted (urban) forest management that considers these new insights.


Assuntos
Mudança Climática , Microclima , Humanos , Temperatura , Europa (Continente)
16.
Glob Chang Biol ; 28(9): 3110-3144, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34967074

RESUMO

Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.


Assuntos
Ecossistema , Solo , Mudança Climática , Microclima , Temperatura
17.
Glob Chang Biol ; 27(14): 3350-3357, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33864334

RESUMO

Spatiotemporal redistribution of incident rainfall in vegetated ecosystems results from the partitioning by plants into intercepted, stemflow, and throughfall fractions. However, variation in patterns and drivers of rainfall partitioning across global biomes remains poorly understood, which limited the ability of climate models to improve the predictions of biome hydrological cycle under global climate change scenario. Here, we synthesized and analyzed the partitioning of incident rainfall into interception, stemflow, and throughfall by trees and shrubs at the global scale using 2430 observations from 236 independent publications. We found that (1) globally, median levels of relative interception, stemflow, and throughfall accounted for 21.8%, 3.2%, and 73.0% of total incident rainfall, respectively; (2) rainfall partitioning varied among different biomes, due to variation in plant composition, canopy structure, and macroclimate; (3) relative stemflow tended to be driven by plant traits, such as crown height:width ratio, basal area, and height, while relative interception and throughfall tended to be driven by plant traits as well as meteorological variables. Our global assessment of patterns and drivers of rainfall partitioning underpins the role of meteorological factors and plant traits in biome-specific ecohydrological cycles. We suggest to include these factors in climate models to improve the predictions of local hydrological cycles and associated biodiversity and function responses to changing climate conditions.


Assuntos
Chuva , Árvores , Ecossistema , Ciclo Hidrológico
18.
Glob Chang Biol ; 27(11): 2279-2297, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33725415

RESUMO

Forest microclimates contrast strongly with the climate outside forests. To fully understand and better predict how forests' biodiversity and functions relate to climate and climate change, microclimates need to be integrated into ecological research. Despite the potentially broad impact of microclimates on the response of forest ecosystems to global change, our understanding of how microclimates within and below tree canopies modulate biotic responses to global change at the species, community and ecosystem level is still limited. Here, we review how spatial and temporal variation in forest microclimates result from an interplay of forest features, local water balance, topography and landscape composition. We first stress and exemplify the importance of considering forest microclimates to understand variation in biodiversity and ecosystem functions across forest landscapes. Next, we explain how macroclimate warming (of the free atmosphere) can affect microclimates, and vice versa, via interactions with land-use changes across different biomes. Finally, we perform a priority ranking of future research avenues at the interface of microclimate ecology and global change biology, with a specific focus on three key themes: (1) disentangling the abiotic and biotic drivers and feedbacks of forest microclimates; (2) global and regional mapping and predictions of forest microclimates; and (3) the impacts of microclimate on forest biodiversity and ecosystem functioning in the face of climate change. The availability of microclimatic data will significantly increase in the coming decades, characterizing climate variability at unprecedented spatial and temporal scales relevant to biological processes in forests. This will revolutionize our understanding of the dynamics, drivers and implications of forest microclimates on biodiversity and ecological functions, and the impacts of global changes. In order to support the sustainable use of forests and to secure their biodiversity and ecosystem services for future generations, microclimates cannot be ignored.


Assuntos
Mudança Climática , Microclima , Biodiversidade , Ecossistema , Florestas , Árvores
19.
Glob Chang Biol ; 27(23): 6307-6319, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34605132

RESUMO

Ecological research heavily relies on coarse-gridded climate data based on standardized temperature measurements recorded at 2 m height in open landscapes. However, many organisms experience environmental conditions that differ substantially from those captured by these macroclimatic (i.e. free air) temperature grids. In forests, the tree canopy functions as a thermal insulator and buffers sub-canopy microclimatic conditions, thereby affecting biological and ecological processes. To improve the assessment of climatic conditions and climate-change-related impacts on forest-floor biodiversity and functioning, high-resolution temperature grids reflecting forest microclimates are thus urgently needed. Combining more than 1200 time series of in situ near-surface forest temperature with topographical, biological and macroclimatic variables in a machine learning model, we predicted the mean monthly offset between sub-canopy temperature at 15 cm above the surface and free-air temperature over the period 2000-2020 at a spatial resolution of 25 m across Europe. This offset was used to evaluate the difference between microclimate and macroclimate across space and seasons and finally enabled us to calculate mean annual and monthly temperatures for European forest understories. We found that sub-canopy air temperatures differ substantially from free-air temperatures, being on average 2.1°C (standard deviation ± 1.6°C) lower in summer and 2.0°C higher (±0.7°C) in winter across Europe. Additionally, our high-resolution maps expose considerable microclimatic variation within landscapes, not captured by the gridded macroclimatic products. The provided forest sub-canopy temperature maps will enable future research to model below-canopy biological processes and patterns, as well as species distributions more accurately.


Assuntos
Florestas , Microclima , Mudança Climática , Temperatura , Árvores
20.
Ann Bot ; 128(3): 315-327, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34057991

RESUMO

BACKGROUND AND AIMS: Hedgerows have been shown to improve forest connectivity, leading to an increased probability of species tracking the shifting bioclimatic envelopes. However, it is still unknown how species in hedgerows respond to temperature changes, and whether effects differ compared with those in nearby forests. We aimed to elucidate how ongoing changes in the climate system will affect the efficiency of hedgerows in supporting forest plant persistence and migration in agricultural landscapes. METHODS: Here we report results from the first warming experiment in hedgerows. We combined reciprocal transplantation of plants along an 860-km latitudinal transect with experimental warming to assess the effects of temperature on vegetative growth and reproduction of two common forest herbs (Anemone nemorosa and Geum urbanum) in hedgerows versus forests. KEY RESULTS: Both species grew taller and produced more biomass in forests than in hedgerows, most likely due to higher competition with ruderals and graminoids in hedgerows. Adult plant performance of both species generally benefitted from experimental warming, despite lower survival of A. nemorosa in heated plots. Transplantation affected the species differently: A. nemorosa plants grew taller, produced more biomass and showed higher survival when transplanted at their home site, indicating local adaptation, while individuals of G. urbanum showed greater height, biomass, reproductive output and survival when transplanted northwards, likely owing to the higher light availability associated with increasing photoperiod during the growing season. CONCLUSIONS: These findings demonstrate that some forest herbs can show phenotypic plasticity to warming temperatures, potentially increasing their ability to benefit from hedgerows as ecological corridors. Our study thus provides novel insights into the impacts of climate change on understorey plant community dynamics in hedgerows, and how rising temperature can influence the efficiency of these corridors to assist forest species' persistence and colonization within and beyond their current distribution range.


Assuntos
Florestas , Plantas , Biomassa , Mudança Climática , Ecossistema , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa