Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Phys Rev Lett ; 127(14): 148001, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34652175

RESUMO

In microtubule-based active nematics, motor-driven extensile motion of microtubule bundles powers chaotic large-scale dynamics. We quantify the interfilament sliding motion both in isolated bundles and in a dense active nematic. The extension speed of an isolated microtubule pair is comparable to the molecular motor stepping speed. In contrast, the net extension in dense 2D active nematics is significantly slower; the interfilament sliding speeds are widely distributed about the average and the filaments exhibit both contractile and extensile relative motion. These measurements highlight the challenge of connecting the extension rate of isolated bundles to the multimotor and multifilament interactions present in a dense 2D active nematic. They also provide quantitative data that is essential for building multiscale models.

2.
Soft Matter ; 15(15): 3264-3272, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30920553

RESUMO

We study the dynamics of a tunable 2D active nematic liquid crystal composed of microtubules and kinesin motors confined to an oil-water interface. Kinesin motors continuously inject mechanical energy into the system through ATP hydrolysis, powering the relative microscopic sliding of adjacent microtubules, which in turn generates macroscale autonomous flows and chaotic dynamics. We use particle image velocimetry to quantify two-dimensional flows of active nematics and extract their statistical properties. In agreement with the hydrodynamic theory, we find that the vortex areas comprising the chaotic flows are exponentially distributed, which allows us to extract the characteristic system length scale. We probe the dependence of this length scale on the ATP concentration, which is the experimental knob that tunes the magnitude of the active stress. Our data suggest a possible mapping between the ATP concentration and the active stress that is based on the Michaelis-Menten kinetics that governs the motion of individual kinesin motors.

3.
Nature ; 491(7424): 431-4, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23135402

RESUMO

With remarkable precision and reproducibility, cells orchestrate the cooperative action of thousands of nanometre-sized molecular motors to carry out mechanical tasks at much larger length scales, such as cell motility, division and replication. Besides their biological importance, such inherently non-equilibrium processes suggest approaches for developing biomimetic active materials from microscopic components that consume energy to generate continuous motion. Being actively driven, these materials are not constrained by the laws of equilibrium statistical mechanics and can thus exhibit sought-after properties such as autonomous motility, internally generated flows and self-organized beating. Here, starting from extensile microtubule bundles, we hierarchically assemble far-from-equilibrium analogues of conventional polymer gels, liquid crystals and emulsions. At high enough concentration, the microtubules form a percolating active network characterized by internally driven chaotic flows, hydrodynamic instabilities, enhanced transport and fluid mixing. When confined to emulsion droplets, three-dimensional networks spontaneously adsorb onto the droplet surfaces to produce highly active two-dimensional nematic liquid crystals whose streaming flows are controlled by internally generated fractures and self-healing, as well as unbinding and annihilation of oppositely charged disclination defects. The resulting active emulsions exhibit unexpected properties, such as autonomous motility, which are not observed in their passive analogues. Taken together, these observations exemplify how assemblages of animate microscopic objects exhibit collective biomimetic properties that are very different from those found in materials assembled from inanimate building blocks, challenging us to develop a theoretical framework that would allow for a systematic engineering of their far-from-equilibrium material properties.

4.
Nat Mater ; 14(11): 1110-5, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26280224

RESUMO

The study of liquid crystals at equilibrium has led to fundamental insights into the nature of ordered materials, as well as to practical applications such as display technologies. Active nematics are a fundamentally different class of liquid crystals, driven away from equilibrium by the autonomous motion of their constituent rod-like particles. This internally generated activity powers the continuous creation and annihilation of topological defects, which leads to complex streaming flows whose chaotic dynamics seem to destroy long-range order. Here, we study these dynamics in experimental and computational realizations of active nematics. By tracking thousands of defects over centimetre-scale distances in microtubule-based active nematics, we identify a non-equilibrium phase characterized by a system-spanning orientational order of defects. This emergent order persists over hours despite defect lifetimes of only seconds. Similar dynamical structures are observed in coarse-grained simulations, suggesting that defect-ordered phases are a generic feature of active nematics.

5.
Biophys J ; 107(4): 947-55, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25140430

RESUMO

The B1 domain of protein G has been a classic model system of folding for decades, the subject of numerous experimental and computational studies. Most of the experimental work has focused on whether the protein folds via an intermediate, but the evidence is mostly limited to relatively slow kinetic observations with a few structural probes. In this work we observe folding on the submillisecond timescale with microfluidic mixers using a variety of probes including tryptophan fluorescence, circular dichroism, and photochemical oxidation. We find that each probe yields different kinetics and compare these observations with a Markov State Model constructed from large-scale molecular dynamics simulations and find a complex network of states that yield different kinetics for different observables. We conclude that there are many folding pathways before the final folding step and that these paths do not have large free energy barriers.


Assuntos
Proteínas de Ligação ao GTP/química , Dobramento de Proteína , Dicroísmo Circular , Escherichia coli , Fluorescência , Cinética , Cadeias de Markov , Técnicas Analíticas Microfluídicas , Simulação de Dinâmica Molecular , Oxidantes Fotoquímicos/química , Processos Fotoquímicos , Fatores de Tempo , Triptofano/química
6.
Sci Rep ; 10(1): 18302, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110128

RESUMO

In development of an embryo, healing of a wound, or progression of a carcinoma, a requisite event is collective epithelial cellular migration. For example, cells at the advancing front of a wound edge tend to migrate collectively, elongate substantially, and exert tractions more forcefully compared with cells many ranks behind. With regards to energy metabolism, striking spatial gradients have recently been reported in the wounded epithelium, as well as in the tumor, but within the wounded cell layer little is known about the link between mechanical events and underlying energy metabolism. Using the advancing confluent monolayer of MDCKII cells as a model system, here we report at single cell resolution the evolving spatiotemporal fields of cell migration speeds, cell shapes, and traction forces measured simultaneously with fields of multiple indices of cellular energy metabolism. Compared with the epithelial layer that is unwounded, which is non-migratory, solid-like and jammed, the leading edge of the advancing cell layer is shown to become progressively more migratory, fluid-like, and unjammed. In doing so the cytoplasmic redox ratio becomes progressively smaller, the NADH lifetime becomes progressively shorter, and the mitochondrial membrane potential and glucose uptake become progressively larger. These observations indicate that a metabolic shift toward glycolysis accompanies collective cellular migration but show, further, that this shift occurs throughout the cell layer, even in regions where associated changes in cell shapes, traction forces, and migration velocities have yet to penetrate. In characterizing the wound healing process these morphological, mechanical, and metabolic observations, taken on a cell-by-cell basis, comprise the most comprehensive set of biophysical data yet reported. Together, these data suggest the novel hypothesis that the unjammed phase evolved to accommodate fluid-like migratory dynamics during episodes of tissue wound healing, development, and plasticity, but is more energetically expensive compared with the jammed phase, which evolved to maintain a solid-like non-migratory state that is more energetically economical.


Assuntos
Metabolismo Energético , Epitélio/metabolismo , Glicólise , Animais , Movimento Celular , Cães , Glucose/metabolismo , Células Madin Darby de Rim Canino/metabolismo , Potencial da Membrana Mitocondrial , NAD/metabolismo , Oxirredução
7.
Nat Commun ; 11(1): 5053, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028821

RESUMO

The epithelial-to-mesenchymal transition (EMT) and the unjamming transition (UJT) each comprises a gateway to cellular migration, plasticity and remodeling, but the extent to which these core programs are distinct, overlapping, or identical has remained undefined. Here, we triggered partial EMT (pEMT) or UJT in differentiated primary human bronchial epithelial cells. After triggering UJT, cell-cell junctions, apico-basal polarity, and barrier function remain intact, cells elongate and align into cooperative migratory packs, and mesenchymal markers of EMT remain unapparent. After triggering pEMT these and other metrics of UJT versus pEMT diverge. A computational model attributes effects of pEMT mainly to diminished junctional tension but attributes those of UJT mainly to augmented cellular propulsion. Through the actions of UJT and pEMT working independently, sequentially, or interactively, those tissues that are subject to development, injury, or disease become endowed with rich mechanisms for cellular migration, plasticity, self-repair, and regeneration.


Assuntos
Movimento Celular/fisiologia , Células Epiteliais/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Regeneração , Mucosa Respiratória/fisiologia , Brônquios/citologia , Brônquios/fisiologia , Plasticidade Celular/fisiologia , Células Cultivadas , Humanos , Cultura Primária de Células , Mucosa Respiratória/citologia
8.
Biophys J ; 97(6): 1772-7, 2009 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-19751683

RESUMO

The protein lambda(6-85) has been implicated in barrierless folding by observations of kinetic relaxation after nanosecond T-jump. In this work we observed folding of this protein after dilution of a high denaturant in an ultrarapid microfluidic mixer at temperatures far below the thermal midpoint. The observations of total intensity and spectral shift of tryptophan fluorescence yielded distinctly different kinetics and activation energies. These results may be explained as diffusion on a low-barrier, one-dimensional, free-energy surface, with different probes having different sensitivities along the reaction coordinate. Additionally, we observed an extremely fast phase within the mixing time that was not observed by T-jump, suggesting that the ensemble of unfolded states populated at high denaturant is distinct from those accessible at high temperature.


Assuntos
Dobramento de Proteína , Proteínas Repressoras/química , Proteínas Virais Reguladoras e Acessórias/química , Cinética , Técnicas Analíticas Microfluídicas , Mutação , Desnaturação Proteica , Proteínas Repressoras/genética , Espectrometria de Fluorescência , Temperatura , Termodinâmica , Proteínas Virais Reguladoras e Acessórias/genética
9.
Ann Am Thorac Soc ; 15(Suppl 1): S35-S37, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29461895

RESUMO

The formation of an integrated tissue from individual cells depends on the properties of the individual cells as well as the interaction of many cells acting as a collective. Three fundamental physiological processes govern the collective scaling from the individual cell to a working tissue: cell sorting, tissue assembly, and collective cellular migration. Mechanistically, cell sorting is governed by differential adhesion, whereas tissue assembly is controlled by the epithelial-to-mesenchymal transition and its inverse, the mesenchymal-to-epithelial transition. The mechanism driving collective cellular migration, however, is not clear. To fill that gap, here we consider cell jamming and unjamming, and their role in collective cellular migration.


Assuntos
Asma/patologia , Movimento Celular , Neoplasias/patologia , Transição Epitelial-Mesenquimal , Epitélio/patologia , Humanos
10.
Nat Phys ; 14: 613-620, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30151030

RESUMO

As an injury heals, an embryo develops, or a carcinoma spreads, epithelial cells systematically change their shape. In each of these processes cell shape is studied extensively whereas variability of shape from cell-to-cell is regarded most often as biological noise. But where do cell shape and its variability come from? Here we report that cell shape and shape variability are mutually constrained through a relationship that is purely geometrical. That relationship is shown to govern processes as diverse as maturation of the pseudostratified bronchial epithelial layer cultured from non-asthmatic or asthmatic donors, and formation of the ventral furrow in the Drosophila embryo. Across these and other epithelial systems, shape variability collapses to a family of distributions that is common to all. That distribution, in turn, is accounted for by a mechanistic theory of cell-cell interaction showing that cell shape becomes progressively less elongated and less variable as the layer becomes progressively more jammed. These findings suggest a connection between jamming and geometry that spans living organisms and inert jammed systems, and thus transcends system details. Although molecular events are needed for any complete theory of cell shape and cell packing, observations point to the hypothesis that jamming behavior at larger scales of organization sets overriding geometrical constraints.

11.
Science ; 355(6331)2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28336609

RESUMO

Transport of fluid through a pipe is essential for the operation of macroscale machines and microfluidic devices. Conventional fluids only flow in response to external pressure. We demonstrate that an active isotropic fluid, composed of microtubules and molecular motors, autonomously flows through meter-long three-dimensional channels. We establish control over the magnitude, velocity profile, and direction of the self-organized flows and correlate these to the structure of the extensile microtubule bundles. The inherently three-dimensional transition from bulk-turbulent to confined-coherent flows occurs concomitantly with a transition in the bundle orientational order near the surface and is controlled by a scale-invariant criterion related to the channel profile. The nonequilibrium transition of confined isotropic active fluids can be used to engineer self-organized soft machines.

12.
Philos Trans A Math Phys Eng Sci ; 372(2029)2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25332391

RESUMO

We investigate the dynamics of an active gel of bundled microtubules (MTs) that is driven by clusters of kinesin molecular motors. Upon the addition of ATP, the coordinated action of thousands of molecular motors drives the gel to a highly dynamical turbulent-like state that persists for hours and is only limited by the stability of constituent proteins and the availability of the chemical fuel. We characterize how enhanced transport and emergent macroscopic flows of active gels depend on relevant molecular parameters, including ATP, kinesin motor and depletant concentrations, MT volume fraction, as well as the stoichiometry of the constituent motor clusters. Our results show that the dynamical and structural properties of MT-based active gels are highly tunable. They also indicate existence of an optimal concentration of molecular motors that maximize far-from-equilibrium activity of active isotropic MT gels.

13.
Science ; 345(6201): 1135-9, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25190790

RESUMO

Engineering synthetic materials that mimic the remarkable complexity of living organisms is a fundamental challenge in science and technology. We studied the spatiotemporal patterns that emerge when an active nematic film of microtubules and molecular motors is encapsulated within a shape-changing lipid vesicle. Unlike in equilibrium systems, where defects are largely static structures, in active nematics defects move spontaneously and can be described as self-propelled particles. The combination of activity, topological constraints, and vesicle deformability produces a myriad of dynamical states. We highlight two dynamical modes: a tunable periodic state that oscillates between two defect configurations, and shape-changing vesicles with streaming filopodia-like protrusions. These results demonstrate how biomimetic materials can be obtained when topological constraints are used to control the non-equilibrium dynamics of active matter.

14.
HFSP J ; 2(6): 388-95, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19436489

RESUMO

By exploring the folding pathways of the B1 domain of protein L with a series of equilibrium and rapid kinetic experiments, we have found its unfolded state to be more complex than suggested by two-state folding models. Using an ultrarapid mixer to initiate protein folding within approximately 2-4 microseconds, we observe folding kinetics by intrinsic tryptophan fluorescence and fluorescence resonance energy transfer. We detect at least two processes faster than 100 mus that would be hidden within the burst phase of a stopped-flow instrument measuring tryptophan fluorescence. Previously reported measurements of slow intramolecular diffusion are commensurate with the slower of the two observed fast phases. These results suggest that a multidimensional energy landscape is necessary to describe the folding of protein L, and that the dynamics of the unfolded state is dominated by multiple small energy barriers.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa