Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biol Psychiatry Glob Open Sci ; 4(3): 100296, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38560725

RESUMO

A common genetic risk factor for bipolar disorder is CACNA1C, a gene that is also critical for cardiac rhythm. The impact of CACNA1C mutations on bipolar patient cardiac rhythm is unknown. Here, we report the cardiac electrophysiological implications of a bipolar disorder-associated genetic risk factor in CACNA1C using patient induced pluripotent stem cell-derived cardiomyocytes. Results indicate that the CACNA1C bipolar disorder-related mutation causes cardiac electrical impulse conduction slowing mediated by impaired intercellular coupling via connexin 43 gap junctions. In vitro gene therapy to restore connexin 43 expression increased cardiac electrical impulse conduction velocity and protected against thioridazine-induced QT prolongation. Patients positive for bipolar disorder CACNA1C genetic risk factors may have elevated proarrhythmic risk for adverse events in response to psychiatric medications that slow conduction or prolong the QT interval. This in vitro diagnostic tool enables cardiac testing specific to patients with psychiatric disorders to determine their sensitivity to off-target effects of psychiatric medications.


Bipolar disorder (BD) is associated with genetic risk factors that present as mutations in specific genes. One gene commonly associated with BD is the calcium channel gene CACNA1C, found in the brain and the heart. The impact of CACNA1C mutation on cardiac function in patients with BD is unclear. Here, we created a BD CACNA1C mutant patient "heart in a dish" using patient-specific stem cells. Gene editing was also used to correct the mutation to create an isogenic control cell line. We found that the BD calcium gene mutation caused slow electrical impulse propagation, reduced the function of the calcium channel, and was associated with low intercellular communication channels called connexin. Using connexin gene therapy in vitro, the the cardiac dysfunction could be corrected and cured. This new approach offers patient-specific hearts-in-a-dish that can be used to ensure that medications will not cause heart racing or arrhythmias.

2.
Neuron ; 76(5): 908-20, 2012 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-23217740

RESUMO

Aß Immunotherapy is a promising therapeutic approach for Alzheimer's disease. Preclinical studies demonstrate that plaque prevention is possible; however, the more relevant therapeutic removal of existing plaque has proven elusive. Monoclonal antibodies in development target both soluble and insoluble Aß peptide. We hypothesized that antibody specificity for deposited plaque was critical for plaque removal since soluble Aß peptide would block recognition of deposited forms. We developed a plaque-specific antibody that targets a modified Aß peptide (Aß(p3-42)), which showed robust clearance of pre-existing plaque without causing microhemorrhage. Interestingly, a comparator N-terminal Aß antibody 3D6, which binds both soluble and insoluble Aß(1-42), lacked efficacy for lowering existing plaque but manifested a significant microhemorrhage liability. Mechanistic studies suggested that the lack of efficacy for 3D6 was attributed to poor target engagement in plaques. These studies have profound implications for the development of therapeutic Aß antibodies for Alzheimer's disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Imunoglobulina G/uso terapêutico , Imunoterapia/métodos , Placa Amiloide/imunologia , Fatores Etários , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/imunologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Hemorragia/induzido quimicamente , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Imunoglobulina G/efeitos adversos , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , Placa Amiloide/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa