Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(47): 23600-23608, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31685632

RESUMO

To understand the impact reduced mercury (Hg) loading and invasive species have had on methylmercury bioaccumulation in predator fish of Lake Michigan, we reconstructed bioaccumulation trends from a fish archive (1978 to 2012). By measuring fish Hg stable isotope ratios, we related temporal changes in Hg concentrations to varying Hg sources. Additionally, dietary tracers were necessary to identify food web influences. Through combined Hg, C, and N stable isotopic analyses, we were able to differentiate between a shift in Hg sources to fish and periods when energetic transitions (from dreissenid mussels) led to the assimilation of contrasting Hg pools (2000 to present). In the late 1980s, lake trout δ202Hg increased (0.4‰) from regulatory reductions in regional Hg emissions. After 2000, C and N isotopes ratios revealed altered food web pathways, resulting in a benthic energetic shift and changes to Hg bioaccumulation. Continued increases in δ202Hg indicate fish are responding to several United States mercury emission mitigation strategies that were initiated circa 1990 and continued through the 2011 promulgation of the Mercury and Air Toxics Standards rule. Unlike archives of sediments, this fish archive tracks Hg sources susceptible to bioaccumulation in Great Lakes fisheries. Analysis reveals that trends in fish Hg concentrations can be substantially affected by shifts in trophic structure and dietary preferences initiated by invasive species in the Great Lakes. This does not diminish the benefits of declining emissions over this period, as fish Hg concentrations would have been higher without these actions.


Assuntos
Cadeia Alimentar , Compostos de Metilmercúrio/análise , Truta/metabolismo , Poluentes Químicos da Água/análise , Poluentes Atmosféricos/análise , Poluição do Ar/legislação & jurisprudência , Anfípodes/química , Animais , Dieta , Dreissena/química , Política Ambiental , Água Doce/química , Sedimentos Geológicos/química , Espécies Introduzidas , Lagos , Isótopos de Mercúrio/análise , Michigan , Comportamento Predatório , Fatores de Tempo , Truta/fisiologia
2.
Environ Sci Technol ; 55(18): 12714-12723, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34460225

RESUMO

Mercury concentrations in the Laurentian Great Lakes waters are among the lowest reported in the literature, while game fish concentrations approach consumption advisory limits, particularly in Lakes Superior, Huron, and Michigan, indicating efficient methylmercury transfer from water to game fish. To determine if increased transfer efficiency is evident within the lower food web, we measured (2010-2018) mercury and dissolved organic carbon (DOC) in water, and in size-sieved seston, dietary tracers (carbon and nitrogen isotope ratios), phytoplankton methylmercury bioaccumulation, and methylmercury biomagnification between increasing seston size fractions. We observed consistently low filter-passing methylmercury (<0.010 ng L-1) and comparatively variable DOC (1.1 to 3.4 mg L-1) concentrations. Methylmercury biomagnification factors between size-sieved seston were similar between lakes. Bioaccumulation factors in phytoplankton were among the highest in the literature (log 5.5 to 6.1), exceeding those in oceans, smaller lakes, and streams, and was influenced by DOC. Higher bioaccumulation rates increase the susceptibility of methylmercury accumulation into the food web. Because mercury is dominantly delivered to the Great Lakes through the atmosphere and the biota therein is highly susceptible to methylmercury uptake, we propose that the Laurentian Great Lakes are excellent sentinels to trace the success of efforts to decrease global mercury emissions (e.g., Minamata Treaty) in the future.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Bioacumulação , Monitoramento Ambiental , Peixes , Cadeia Alimentar , Lagos , Mercúrio/análise , Poluentes Químicos da Água/análise
3.
Environ Sci Technol ; 54(24): 15840-15851, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33228362

RESUMO

Mercury (Hg) methylation is a microbially mediated process that converts inorganic Hg into bioaccumulative, neurotoxic methylmercury (MeHg). The metabolic activity of methylating organisms is highly dependent on biogeochemical conditions, which subsequently influences MeHg production. However, our understanding of the ecophysiology of methylators in natural ecosystems is still limited. Here, we identified potential locations of MeHg production in the anoxic, sulfidic hypolimnion of a freshwater lake. At these sites, we used shotgun metagenomics to characterize microorganisms with the Hg-methylation gene hgcA. Putative methylators were dominated by hgcA sequences divergent from those in well-studied, confirmed methylators. Using genome-resolved metagenomics, we identified organisms with hgcA (hgcA+) within the Bacteroidetes and the recently described Kiritimatiellaeota phyla. We identified hgcA+ genomes derived from sulfate-reducing bacteria, but these accounted for only 22% of hgcA+ genome coverage. The most abundant hgcA+ genomes were from fermenters, accounting for over half of the hgcA gene coverage. Many of these organisms also mediate hydrolysis of polysaccharides, likely from cyanobacterial blooms. This work highlights the distribution of the Hg-methylation genes across microbial metabolic guilds and indicate that primary degradation of polysaccharides and fermentation may play an important but unrecognized role in MeHg production in the anoxic hypolimnion of freshwater lakes.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Anaerobiose , Ecossistema , Lagos , Mercúrio/análise , Metilação , Sulfatos
4.
Anal Bioanal Chem ; 412(3): 681-690, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31834449

RESUMO

The development of mercury (Hg) stable isotope measurements has enhanced the study of Hg sources and transformations in the environment. As a result of the mixing of inorganic Hg (iHg) and methylmercury (MeHg) species within organisms of the aquatic food web, understanding species-specific Hg stable isotopic compositions is of significant importance. The lack of MeHg isotope measurements is due to the analytical difficulty in the separation of the MeHg from the total Hg pool, with only a few methods having been tested over the past decade with varying degrees of success, and only a handful of environmentally relevant measurements. Here, we present a novel anion-exchange resin separation method using AG 1-X4 that further isolates MeHg from the sample matrix, following a distillation pretreatment, in order to obtain ambient MeHg stable isotopic compositions. This method avoids the use of organic reagents, does not require complex instrumentation, and is applicable across matrices. Separation tests across sediment, water, and biotic matrices showed acceptable recoveries (98 ± 5%, n = 54) and reproducible δ202Hg isotope results (2 SDs ≤ 0.15‰) down to 5 ng of MeHg. The measured MeHg pools in natural matrices, such as plankton and sediments, showed large deviations from the non-speciated total Hg measurement, indicating that there is an important isotopic shift during methylation that is not recorded by typical measurements, but is vital in order to assess sources of Hg during bioaccumulation. Graphical abstract.


Assuntos
Cromatografia por Troca Iônica/métodos , Monitoramento Ambiental/métodos , Compostos de Metilmercúrio/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Animais , Peixes/metabolismo , Cadeia Alimentar , Sedimentos Geológicos/análise , Limite de Detecção , Isótopos de Mercúrio/análise , Isótopos de Mercúrio/isolamento & purificação , Compostos de Metilmercúrio/análise , Plâncton/química , Poluentes Químicos da Água/análise
5.
Environ Sci Technol ; 53(17): 10110-10119, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31390861

RESUMO

Streams in the northeastern U.S. receive mercury (Hg) in varying proportions from atmospheric deposition and legacy point sources, making it difficult to attribute shifts in fish concentrations directly back to changes in Hg source management. Mercury stable isotope tracers were utilized to relate sources of Hg to co-located fish and bed sediments from 23 streams across a forested to urban-industrial land-use gradient within this region. Mass-dependent isotopes (δ202Hg) in prey and game fish at forested sites were depleted (medians -0.95 and -0.83 ‰, respectively) in comparison to fish from urban-industrial settings (medians -0.26 and -0.38 ‰, respectively); the forested site group also had higher prey fish Hg concentrations. The separation of Hg isotope signatures in fish was strongly related to in-stream and watershed land-use indicator variables. Fish isotopes were strongly correlated with bed sediment isotopes, but the isotopic offset between the two matrices was variable due to differing ecosystem-specific drivers controlling the extent of MeHg formation. The multivariable approach of analyzing watershed characteristics and stream chemistry reveals that the Hg isotope composition in fish is linked to current and historic Hg sources in the northeastern U.S. and can be used to trace bioaccumulated Hg.


Assuntos
Mercúrio , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Isótopos de Mercúrio , New England , Rios
6.
Environ Sci Technol ; 52(5): 2768-2776, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29444571

RESUMO

Identifying the sources of methylmercury (MeHg) and tracing the transformations of mercury (Hg) in the aquatic food web are important components of effective strategies for managing current and legacy Hg sources. In our previous work, we measured stable isotopes of Hg (δ202Hg, Δ199Hg, and Δ200Hg) in the Laurentian Great Lakes and estimated source contributions of Hg to bottom sediment. Here, we identify isotopically distinct Hg signatures for Great Lakes trout ( Salvelinus namaycush) and walleye ( Sander vitreus), driven by both food-web and water-quality characteristics. Fish contain high values for odd-isotope mass independent fractionation (MIF) with averages ranging from 2.50 (western Lake Erie) to 6.18‰ (Lake Superior) in Δ199Hg. The large range in odd-MIF reflects variability in the depth of the euphotic zone, where Hg is most likely incorporated into the food web. Even-isotope MIF (Δ200Hg), a potential tracer for Hg from precipitation, appears both disconnected from lake sedimentary sources and comparable in fish among the five lakes. We suggest that similar to the open ocean, water-column methylation also occurs in the Great Lakes, possibly transforming recently deposited atmospheric Hg deposition. We conclude that the degree of photochemical processing of Hg is controlled by phytoplankton uptake rather than by dissolved organic carbon quantity among lakes.


Assuntos
Mercúrio , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Isótopos , Lagos , Isótopos de Mercúrio
7.
Arch Environ Contam Toxicol ; 68(4): 678-88, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25628029

RESUMO

Examination of differences in contaminant concentrations between the sexes of fish, across several fish species, may show clues for important behavioral and physiological differences between the sexes. We determined whole-fish total mercury (Hg) concentrations of 25 male and 25 female adult burbot Lota lota captured in Lake Erie during summer 2011 and of 14 male and 18 female adult burbot captured in Great Slave Lake (Northwest Territories, Canada) during winter 2013. On average, females had 22 % greater Hg concentrations than males. This difference was probably not due to a greater feeding rate by females because results from previous studies based on polychlorinated biphenyl determinations of these same burbot indicated that males fed at a substantially greater rate than females. Based on our determinations of Hg concentrations in the gonads and somatic tissue of 5 ripe females and 5 ripe males, this difference was not attributable to changes in Hg concentration immediately after spawning due to the release of gametes. Furthermore, bioenergetics modeling results from previous studies indicated that growth dilution would not explain any portion of this observed difference in Hg concentrations between the sexes. We therefore conclude that this difference was most likely due to a substantially faster rate of Hg elimination by males compared with females. Male burbot exhibit among the greatest gonadosomatic indices (GSIs) of all male fishes, with their testes accounting for between 10 and 15 % of their body weight when the fish are in ripe condition. Androgens have been linked to enhanced Hg-elimination rates in other vertebrates. If androgen production is positively related to GSI, then male burbot would be expected to have among the greatest androgen levels of all fishes. Thus, we hypothesize that male burbot eliminate Hg from their bodies faster than most other male fishes and that this explains the greater Hg concentration in females compared with males.


Assuntos
Monitoramento Ambiental , Gadiformes/metabolismo , Mercúrio/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Canadá , Feminino , Gônadas , Masculino , Bifenilos Policlorados/metabolismo , Fatores Sexuais , Poluentes Químicos da Água/análise
8.
Sci Total Environ ; 838(Pt 1): 156031, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35595135

RESUMO

Mercury (Hg) contamination has been a persistent concern in the Florida Everglades for over three decades due to elevated atmospheric deposition and the system's propensity for methylation and rapid bioaccumulation. Given declines in atmospheric Hg concentrations in the conterminous United States and efforts to mitigate nutrient release to the greater Everglades ecosystem, it was vital to assess how Hg dynamics responded on temporal and spatial scales. This study used a multimedia approach (water and biota) to examine Hg and methylmercury (MeHg) dynamics across a 76-site network within the southernmost portion of the region, Everglades National Park (ENP), from 2008 to 2018. Hg concentrations across matrices showed that air, water, and biota from the system were inextricably linked. Temporal patterns across matrices were driven primarily by hydrologic and climatic changes in the park and no evidence of a decline in atmospheric Hg deposition from 2008 to 2018 was observed, unlike other regions of the United States. In the Shark River Slough (SRS), excess dissolved organic carbon and sulfate were also consistently delivered from upgradient canals and showed no evidence of decline over the study period. Within the SRS a strong positive correlation was observed between MeHg concentrations in surface water and resident fish. Within distinct geographic regions of ENP (SRS, Marsh, Coastal), the geochemical controls on MeHg dynamics differed and highlighted regions susceptible to higher MeHg bioaccumulation, particularly in the SRS and Coastal regions. This study demonstrates the strong influence that dissolved organic carbon and sulfate loads have on spatial and temporal distributions of MeHg across ENP. Importantly, improved water quality and flow rates are two key restoration targets of the nearly 30-year Everglades restoration program, which if achieved, this study suggests would lead to reduced MeHg production and exposure.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Bioacumulação , Ecossistema , Monitoramento Ambiental , Mercúrio/análise , Parques Recreativos , Sulfatos , Poluentes Químicos da Água/análise
9.
Environ Sci Technol ; 45(21): 9262-7, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21910490

RESUMO

We measured mercury (Hg) concentrations and calculated export and yield from the Yukon River Basin (YRB) to quantify Hg flux from a large, permafrost-dominated, high-latitude watershed. Exports of Hg averaged 4400 kg Hg yr(-1). The average annual yield for the YRB during the study period was 5.17 µg m(-2) yr(-1), which is 3-32 times more than Hg yields reported for 8 other major northern hemisphere river basins. The vast majority (90%) of Hg export is associated with particulates. Half of the annual export of Hg occurred during the spring with about 80% of 34 samples exceeding the U.S. EPA Hg standard for adverse chronic effects to biota. Dissolved and particulate organic carbon exports explained 81% and 50%, respectively, of the variance in Hg exports, and both were significantly (p < 0.001) correlated with water discharge. Recent measurements indicate that permafrost contains a substantial reservoir of Hg. Consequently, climate warming will likely accelerate the mobilization of Hg from thawing permafrost increasing the export of organic carbon associated Hg and thus potentially exacerbating the production of bioavailable methylmercury from permafrost-dominated northern river basins.


Assuntos
Mudança Climática , Monitoramento Ambiental/métodos , Mercúrio/análise , Poluentes Químicos da Água/análise , Rios
10.
J Hazard Mater ; 404(Pt A): 124097, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33022526

RESUMO

Past industrial use and subsequent release of mercury (Hg) into the environment have resulted in severe cases of legacy contamination that still influence contemporary Hg levels in biota. While the bioaccumulation of legacy Hg is commonly assessed via concentration measurements within fish tissue, this practice becomes difficult in regions of high productivity and methylmercury (MeHg) production, like the Mobile River Basin, Alabama in the southeastern United States. This study applied Hg stable isotope tracers to distinguish legacy Hg from regional deposition sources in sediments, waters, and fish within the Mobile River. Sediments and waters displayed differences in δ202Hg between industrial and background sites, which corresponded to drastic differences in Hg concentration. Sites that were affected by legacy Hg, as defined by δ202Hg, produced largemouth bass with lower MeHg content (59-70%) than those captured in the main rivers (>85%). Direct measurements of Hg isotopes and mathematical estimates of MeHg isotope pools in fish displayed similar distinctions between legacy and watershed sources as observed in other matrices. These results indicate that legacy Hg can accumulate directly into fish tissue as the inorganic species and may also be available for methylation within contaminated zones decades after the initial release.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Bioacumulação , Monitoramento Ambiental , Peixes , Sedimentos Geológicos , Mercúrio/análise , Rios , Poluentes Químicos da Água/análise
11.
Sci Total Environ ; 779: 146284, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-33744580

RESUMO

Industrial chemical contamination within coastal regions of the Great Lakes can pose serious risks to wetland habitat and offshore fisheries, often resulting in fish consumption advisories that directly affect human and wildlife health. Mercury (Hg) is a contaminant of concern in many of these highly urbanized and industrialized coastal regions, one of which is the Saint Louis River estuary (SLRE), the second largest tributary to Lake Superior. The SLRE has legacy Hg contamination that drives high Hg concentrations within sediments, but it is unclear whether legacy-derived Hg actively cycles within the food web. To understand the relative contributions of legacy versus contemporary Hg sources in coastal zones, Hg, carbon, and nitrogen stable isotope ratios were measured in sediments and food webs of SLRE and the Bad River, an estuarine reference site. Hg stable isotope values revealed that legacy contamination of Hg was widespread and heterogeneously distributed in sediments of SLRE, even in areas lacking industrial Hg sources. Similar isotope values were found in benthic invertebrates, riparian spiders, and prey fish from SLRE, confirming legacy Hg reaches the SLRE food web. Direct comparison of prey fish from SLRE and the Bad River confirmed that Hg isotope differences between the sites were not attributable to fractionation associated with rapid Hg bioaccumulation at estuarine mouths, but due to the presence of industrial Hg within SLRE. The Hg stable isotope values of game fish in both estuaries were dependent on fish migration and diet within the estuaries and extending into Lake Superior. These results indicate that Hg from legacy contamination is actively cycling within the SLRE food web and, through migration, this Hg also extends into Lake Superior via game fish. Understanding sources and the movement of Hg within the estuarine food web better informs restoration strategies for other impaired Great Lakes coastal zones.


Assuntos
Mercúrio , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Estuários , Peixes , Cadeia Alimentar , Great Lakes Region , Humanos , Lagos , Mercúrio/análise , Rios , Poluentes Químicos da Água/análise
12.
Environ Pollut ; 228: 8-18, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28501633

RESUMO

Atmospheric mercury (Hg) deposition to forests is important because half of the land cover in the eastern USA is forest. Mercury was measured in autumn litterfall and weekly precipitation samples at a total of 27 National Atmospheric Deposition Program (NADP) monitoring sites in deciduous and mixed deciduous-coniferous forests in 16 states in the eastern USA during 2007-2014. These simultaneous, uniform, repeated, annual measurements of forest Hg include the broadest area and longest time frame to date. The autumn litterfall-Hg concentrations and litterfall mass at the study sites each year were combined with annual precipitation-Hg data. Rates of litterfall-Hg deposition were higher than or equal to precipitation-Hg deposition rates in 70% of the annual data, which indicates a substantial contribution from litterfall to total atmospheric-Hg deposition. Annual litterfall-Hg deposition in this study had a median of 11.7 µg per square meter per year (µg/m2/yr) and ranged from 2.2 to 23.4 µg/m2/yr. It closely matched modeled dry-Hg deposition, based on land cover at selected NADP Hg-monitoring sites. Mean annual atmospheric-Hg deposition at forest study sites exhibited a spatial pattern partly explained by statistical differences among five forest-cover types and related to the mapped density of Hg emissions. Forest canopies apparently recorded changes in atmospheric-Hg concentrations over time because litterfall-Hg concentrations decreased year to year and litterfall-Hg concentrations were significantly higher in 2007-2009 than in 2012-2014. These findings reinforce reported decreases in Hg emissions and atmospheric elemental-Hg concentrations during this same time period. Methylmercury (MeHg) was detected in all litterfall samples at all sites, compared with MeHg detections in less than half the precipitation samples at selected sites during the study. These results indicate MeHg in litterfall is a pathway into the terrestrial food web where it can accumulate in the prey of songbirds, bats, and raptors.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Florestas , Mercúrio/análise , Modelos Químicos , Compostos de Metilmercúrio , Árvores , Estados Unidos
13.
Front Microbiol ; 6: 1389, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26733947

RESUMO

Methylation of tracer and ambient mercury ((200)Hg and (202)Hg, respectively) equilibrated with four different natural organic matter (NOM) isolates was investigated in vivo using the Hg-methylating sulfate-reducing bacterium Desulfobulbus propionicus 1pr3. Desulfobulbus cultures grown fermentatively with environmentally representative concentrations of dissolved NOM isolates, Hg[II], and HS(-) were assayed for absolute methylmercury (MeHg) concentration and conversion of Hg(II) to MeHg relative to total unfiltered Hg(II). Results showed the (200)Hg tracer was methylated more efficiently in the presence of hydrophobic NOM isolates than in the presence of transphilic NOM, or in the absence of NOM. Different NOM isolates were associated with variable methylation efficiencies for either the (202)Hg tracer or ambient (200)Hg. One hydrophobic NOM, F1 HpoA derived from dissolved organic matter from the Florida Everglades, was equilibrated for different times with Hg tracer, which resulted in different methylation rates. A 5 day equilibration with F1 HpoA resulted in more MeHg production than either the 4 h or 30 day equilibration periods, suggesting a time dependence for NOM-enhanced Hg bioavailability for methylation.

14.
Environ Pollut ; 184: 62-72, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24035911

RESUMO

Southeastern Alaska is a remote coastal-maritime ecosystem that is experiencing increased deposition of mercury (Hg) as well as rapid glacier loss. Here we present the results of the first reported survey of total and methyl Hg (MeHg) concentrations in regional streams and biota. Overall, streams draining large wetland areas had higher Hg concentrations in water, mayflies, and juvenile salmon than those from glacially-influenced or recently deglaciated watersheds. Filtered MeHg was positively correlated with wetland abundance. Aqueous Hg occurred predominantly in the particulate fraction of glacier streams but in the filtered fraction of wetland-rich streams. Colonization by anadromous salmon in both glacier and wetland-rich streams may be contributing additional marine-derived Hg. The spatial distribution of Hg in the range of streams presented here shows that watersheds are variably, yet fairly predictably, sensitive to atmospheric and marine inputs of Hg.


Assuntos
Camada de Gelo/química , Mercúrio/análise , Rios/química , Salmão/metabolismo , Poluentes Químicos da Água/análise , Áreas Alagadas , Alaska , Animais , Biota , Ecossistema , Monitoramento Ambiental , Mercúrio/metabolismo , Compostos de Metilmercúrio/análise , Compostos de Metilmercúrio/metabolismo , Poluentes Químicos da Água/metabolismo
15.
Environ Pollut ; 161: 284-90, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21715069

RESUMO

Mercury (Hg) in autumn litterfall from predominately deciduous forests was measured in 3 years of samples from 23 Mercury Deposition Network sites in 15 states across the eastern USA. Annual litterfall Hg dry deposition was significantly higher (median 12.3 micrograms per square meter (µg/m(2)), range 3.5-23.4 µg/m(2)) than annual Hg wet deposition (median 9.6 µg/m(2), range 4.4-19.7 µg/m(2)). The mean ratio of dry to wet Hg deposition was 1.3-1. The sum of dry and wet Hg deposition averaged 21 µg/m(2) per year and 55% was litterfall dry deposition. Methylmercury was a median 0.8% of Hg in litterfall and ranged from 0.6 to 1.5%. Annual litterfall Hg and wet Hg deposition rates differed significantly and were weakly correlated. Litterfall Hg dry deposition differed among forest-cover types. This study demonstrated how annual litterfall Hg dry deposition rates approximate the lower bound of annual Hg dry fluxes.


Assuntos
Poluentes Atmosféricos/análise , Mercúrio/análise , Modelos Químicos , Folhas de Planta/química , Poluição do Ar/estatística & dados numéricos , Atmosfera/química , Monitoramento Ambiental , Great Lakes Region , New England
16.
Environ Sci Technol ; 36(11): 2303-10, 2002 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12075781

RESUMO

Mercury (Hg) contamination of aquatic ecosystems and subsequent methylmercury bioaccumulation are significant environmental problems of global extent. At regional to global scales, the primary mechanism of Hg contamination is atmospheric Hg transport. Thus, a better understanding of the long-term history of atmospheric Hg cycling and quantification of the sources is critical for assessing the regional and global impact of anthropogenic Hg emissions. Ice cores collected from the Upper Fremont Glacier (UFG), Wyoming, contain a high-resolution record of total atmospheric Hg deposition (ca. 1720-1993). Total Hg in 97 ice-core samples was determined with trace-metal clean handling methods and low-level analytical procedures to reconstruct the first and most comprehensive atmospheric Hg deposition record of its kind yet available from North America. The record indicates major atmospheric releases of both natural and anthropogenic Hg from regional and global sources. Integrated over the past 270-year ice-core history, anthropogenic inputs contributed 52%, volcanic events 6%, and background sources 42%. More significantly, during the last 100 years, anthropogenic sources contributed 70% of the total Hg input. Unlike the 2-7-fold increase observed from preindustrial times (before 1840) to the mid-1980s in sediment-core records, the UFG record indicates a 20-fold increase for the same period. The sediment-core records, however, are in agreement with the last 10 years of this ice-core record, indicating declines in atmospheric Hg deposition.


Assuntos
Poluentes Atmosféricos/análise , Poluentes Atmosféricos/história , Sedimentos Geológicos/química , Mercúrio/análise , Mercúrio/história , Monitoramento Ambiental , História do Século XVIII , História do Século XIX , História do Século XX , Gelo , Estudos Retrospectivos , Erupções Vulcânicas , Wyoming
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa