Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35074916

RESUMO

Pogona vitticeps has female heterogamety (ZZ/ZW), but the master sex-determining gene is unknown, as it is for all reptiles. We show that nr5a1 (Nuclear Receptor Subfamily 5 Group A Member 1), a gene that is essential in mammalian sex determination, has alleles on the Z and W chromosomes (Z-nr5a1 and W-nr5a1), which are both expressed and can recombine. Three transcript isoforms of Z-nr5a1 were detected in gonads of adult ZZ males, two of which encode a functional protein. However, ZW females produced 16 isoforms, most of which contained premature stop codons. The array of transcripts produced by the W-borne allele (W-nr5a1) is likely to produce truncated polypeptides that contain a structurally normal DNA-binding domain and could act as a competitive inhibitor to the full-length intact protein. We hypothesize that an altered configuration of the W chromosome affects the conformation of the primary transcript generating inhibitory W-borne isoforms that suppress testis determination. Under this hypothesis, the genetic sex determination (GSD) system of P. vitticeps is a W-borne dominant female-determining gene that may be controlled epigenetically.


Assuntos
Alelos , Cromossomos/genética , Splicing de RNA , Processos de Determinação Sexual , Fator Esteroidogênico 1/genética , Sequência de Aminoácidos , Animais , Cromossomos/química , Feminino , Dosagem de Genes , Lagartos , Masculino , Modelos Moleculares , Conformação Molecular , Conformação Proteica , Répteis , Cromossomos Sexuais , Fatores Sexuais , Fator Esteroidogênico 1/química , Relação Estrutura-Atividade
2.
Mol Biol Evol ; 40(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37279881

RESUMO

Chromosome rearrangements are often implicated with genomic divergence and are proposed to be associated with species evolution. Rearrangements alter the genomic structure and interfere with homologous recombination by isolating a portion of the genome. Integration of multiplatform next-generation DNA sequencing technologies has enabled putative identification of chromosome rearrangements in many taxa; however, integrating these data sets with cytogenetics is still uncommon beyond model genetic organisms. Therefore, to achieve the ultimate goal for the genomic classification of eukaryotic organisms, physical chromosome mapping remains critical. The ridge-tailed goannas (Varanus acanthurus BOULENGER) are a group of dwarf monitor lizards comprised of several species found throughout northern Australia. These lizards exhibit extreme divergence at both the genic and chromosomal levels. The chromosome polymorphisms are widespread extending across much of their distribution, raising the question if these polymorphisms are homologous within the V. acanthurus complex. We used a combined genomic and cytogenetic approach to test for homology across divergent populations with morphologically similar chromosome rearrangements. We showed that more than one chromosome pair was involved with the widespread rearrangements. This finding provides evidence to support de novo chromosome rearrangements have occurred within populations. These chromosome rearrangements are characterized by fixed allele differences originating in the vicinity of the centromeric region. We then compared this region with several other assembled genomes of reptiles, chicken, and the platypus. We demonstrated that the synteny of genes in Reptilia remains conserved despite centromere repositioning across these taxa.


Assuntos
Evolução Molecular , Lagartos , Animais , Alelos , Lagartos/genética , Centrômero/genética , Rearranjo Gênico
3.
Chromosome Res ; 31(1): 9, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36745262

RESUMO

Chromosomal rearrangements are often associated with local adaptation and speciation because they suppress recombination, and as a result, rearrangements have been implicated in disrupting gene flow. Although there is strong evidence to suggest that chromosome rearrangements are a factor in genetic isolation of divergent populations, the underlying mechanism remains elusive. Here, we applied an integrative cytogenetics and genomics approach testing whether chromosomal rearrangements are the initial process, or a consequence, of population divergence in the dwarf goanna, Varanus acanthurus. Specifically, we tested whether chromosome rearrangements are indicators of genetic barriers that can be used to identify divergent populations by looking at gene flow within and between populations with rearrangements. We found that gene flow was present between individuals with chromosome rearrangements within populations, but there was no gene flow between populations that had similar chromosome rearrangements. Moreover, we identified a correlation between reduced genetic variation in populations with a higher frequency of homozygous submetacentric individuals. These findings suggest that chromosomal rearrangements were widespread prior to divergence, and because we found populations with higher frequencies of submetacentric chromosomes were associated with lower genetic diversity, this could indicate that polymorphisms within populations are early indicators of genetic drift.


Assuntos
Lagartos , Animais , Inversão Cromossômica , Rearranjo Gênico , Deriva Genética , Especiação Genética , Lagartos/genética , Polimorfismo Genético
4.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34865126

RESUMO

Chromosome rearrangements can result in the rapid evolution of hybrid incompatibilities. Robertsonian fusions, particularly those with monobrachial homology, can drive reproductive isolation amongst recently diverged taxa. The recent radiation of rock-wallabies (genus Petrogale) is an important model to explore the role of Robertsonian fusions in speciation. Here, we pursue that goal using an extensive sampling of populations and genomes of Petrogale from north-eastern Australia. In contrast to previous assessments using mitochondrial DNA or nuclear microsatellite loci, genomic data are able to separate the most closely related species and to resolve their divergence histories. Both phylogenetic and population genetic analyses indicate introgression between two species that differ by a single Robertsonian fusion. Based on the available data, there is also evidence for introgression between two species which share complex chromosomal rearrangements. However, the remaining results show no consistent signature of introgression amongst species pairs and where evident, indicate generally low introgression overall. X-linked loci have elevated divergence compared with autosomal loci indicating a potential role for genic evolution to produce reproductive isolation in concert with chromosome change. Our results highlight the value of genome scale data in evaluating the role of Robertsonian fusions and structural variation in divergence, speciation, and patterns of molecular evolution.


Assuntos
Macropodidae , Isolamento Reprodutivo , Animais , Cromossomos/genética , DNA Mitocondrial/genética , Macropodidae/genética , Filogenia
5.
Heredity (Edinb) ; 126(5): 805-816, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33526811

RESUMO

The view that has genotypic sex determination and environmental sex determination as mutually exclusive states in fishes and reptiles has been contradicted by the discovery that chromosomal sex and environmental influences can co-exist within the same species, hinting at a continuum of intermediate states. Systems where genes and the environment interact to determine sex present the opportunity for sex reversal to occur, where the phenotypic sex is the opposite of that predicted by their sex chromosome complement. The skink Bassiana duperreyi has XX/XY sex chromosomes with sex reversal of the XX genotype to a male phenotype, in laboratory experiments, and in field nests, in response to exposure to cold incubation temperatures. Here we studied the frequency of sex reversal in adult populations of B. duperreyi in response to climatic variation, using elevation as a surrogate for environmental temperatures. We demonstrate sex reversal in the wild for the first time in adults of a reptile species with XX/XY sex determination. The highest frequency of sex reversal occurred at the highest coolest elevation location, Mt Ginini (18.46%) and decreased in frequency to zero with decreasing elevation. We model the impact of this under Fisher's frequency-dependent selection to show that, at the highest elevations, populations risk the loss of the Y chromosome and a transition to temperature-dependent sex determination. This study contributes to our understanding of the risks of extinction from climate change in species subject to sex reversal by temperature, and will provide focus for future research to test on-the-ground management strategies to mitigate the effects of climate in local populations.


Assuntos
Lagartos , Processos de Determinação Sexual , Animais , Genótipo , Lagartos/genética , Masculino , Cromossomos Sexuais/genética , Cromossomo Y/genética
6.
BMC Genomics ; 21(1): 667, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32993477

RESUMO

BACKGROUND: Homologous sex chromosomes can differentiate over time because recombination is suppressed in the region of the sex determining locus, leading to the accumulation of repeats, progressive loss of genes that lack differential influence on the sexes and sequence divergence on the hemizygous homolog. Divergence in the non-recombining regions leads to the accumulation of Y or W specific sequence useful for developing sex-linked markers. Here we use in silico whole-genome subtraction to identify putative sex-linked sequences in the scincid lizard Bassiana duperreyi which has heteromorphic XY sex chromosomes. RESULTS: We generated 96.7 × 109 150 bp paired-end genomic sequence reads from a XY male and 81.4 × 109 paired-end reads from an XX female for in silico whole genome subtraction to yield Y enriched contigs. We identified 7 reliable markers which were validated as Y chromosome specific by polymerase chain reaction (PCR) against a panel of 20 males and 20 females. CONCLUSIONS: The sex of B. duperreyi can be reversed by low temperatures (XX genotype reversed to a male phenotype). We have developed sex-specific markers to identify the underlying genotypic sex and its concordance or discordance with phenotypic sex in wild populations of B. duperreyi. Our pipeline can be applied to isolate Y or W chromosome-specific sequences of any organism and is not restricted to sequence residing within single-copy genes. This study greatly improves our knowledge of the Y chromosome in B. duperreyi and will enhance future studies of reptile sex determination and sex chromosome evolution.


Assuntos
Técnicas de Genotipagem/normas , Lagartos/genética , Sequenciamento Completo do Genoma/métodos , Cromossomo Y/genética , Animais , Simulação por Computador , Feminino , Loci Gênicos , Técnicas de Genotipagem/métodos , Masculino
7.
Cytogenet Genome Res ; 157(1-2): 7-20, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30645998

RESUMO

Studies of reptile (nonavian reptiles) chromosomes began well over a century ago (1897) with the initial report on the description of sand lizard (Lacerta agilis) chromosomes. Since then, chromosome analysis in reptiles has contributed significantly to understanding chromosome evolution in vertebrates. Reptile karyotypes are also unique, as being the only vertebrate group where the majority of the species possess variable numbers of macro- and microchromosomes, which was first reported for iguanids and teiids in 1921. In addition, many reptiles have microchromosomes as sex chromosomes, highlighting their evolutionary significance, yet very little is known about their evolutionary origin and significance in shaping amniote genomes. Advances in genomic technologies in recent years have accelerated our capacity to understand how sequences are arranged within a genome. However, genomic and cytogenetic analyses have been combined for only 3 species to provide a deeper understanding of reptile chromosome evolution and sequence organization. In this review, we highlight how a combined approach of cytogenetic analysis and sequence analysis in reptiles can help us answer fundamental questions of chromosome evolution in reptiles, including evolution of microchromosomes and sex chromosomes.


Assuntos
Cromossomos/genética , Citogenética/métodos , Genômica/métodos , Lagartos/genética , Répteis/genética , Animais , Evolução Molecular , Genoma/genética , Cariotipagem , Filogenia , Répteis/classificação
8.
Chromosome Res ; 26(4): 317-332, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30539406

RESUMO

Two marsupial families exemplify divergent rates of karyotypic change. The Dasyurid family has an extremely conserved karyotype. In contrast, there is significant chromosomal variation within the Macropodidae family, best exemplified by members of the genus Petrogale (rock-wallabies). Both families are also distinguished by their telomere landscape (length and epigenetics), with the dasyurids having a unique telomere length dimorphism not observed in other marsupials and hypothesised to be regulated in a parent-of-origin fashion. Previous work has shown that proximal ends of chromosomes are enriched in cytosine methylation in dasyurids, but that the chromosomes of a macropod, the tammar wallaby, have DNA methylation enrichment of pericentric regions. Using a combination of telomere and 5-methylcytosine immunofluorescence staining, we investigated the telomere landscape of four dasyurid and three Petrogale species. As part of this study, we also further examined the parent-of-origin hypothesis for the regulation of telomere length dimorphism in dasyurids, using epigenetic modifications known to differentiate the active maternal X chromosome, including 5-methylcytosine methylation and histone modifications H3K4me2, H3K9ac and H4Kac. Our results give further support to the parent-of-origin hypothesis for the regulation of telomere length dimorphism in dasyurids, where the paternally derived X chromosome in females was associated with long telomeres and the maternally derived with short telomeres. In contrast to the tammar wallaby, rock-wallabies demonstrated a similar 5-methylcytosine staining pattern across all chromosomes to that of dasyurids, suggesting that DNA methylation of telomeric regions is not responsible for differences in the rates of chromosome evolution between these two families.


Assuntos
Cromossomos/genética , Metilação de DNA , Cariótipo , Marsupiais/genética , Telômero/genética , Animais , Evolução Biológica , Epigenômica , Macropodidae , Homeostase do Telômero , Cromossomo X/genética
9.
Reprod Fertil Dev ; 31(7): 1189-1202, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30630589

RESUMO

Marsupials have unique features that make them particularly interesting to study, and sequencing of marsupial genomes is helping to understand their evolution. A decade ago, it was a huge feat to sequence the first marsupial genome. Now, the advances in sequencing technology have made the sequencing of many more marsupial genomes possible. However, the DNA sequence is only one component of the structures it is packaged into: chromosomes. Knowing the arrangement of the DNA sequence on each chromosome is essential for a genome assembly to be used to its full potential. The importance of combining sequence information with cytogenetics has previously been demonstrated for rapidly evolving regions of the genome, such as the sex chromosomes, as well as for reconstructing the ancestral marsupial karyotype and understanding the chromosome rearrangements involved in the Tasmanian devil facial tumour disease. Despite the recent advances in sequencing technology assisting in genome assembly, physical anchoring of the sequence to chromosomes is required to achieve a chromosome-level assembly. Once chromosome-level assemblies are achieved for more marsupials, we will be able to investigate changes in the packaging and interactions between chromosomes to gain an understanding of the role genome architecture has played during marsupial evolution.


Assuntos
Genoma , Cariótipo , Marsupiais/genética , Animais , Epigenômica , Cariotipagem , Filogenia
10.
Chromosoma ; 125(4): 633-44, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27255308

RESUMO

Chromosome rearrangements have been implicated in diseases, such as cancer, and speciation, but it remains unclear whether rearrangements are causal or merely a consequence of these processes. Two marsupial families with very different rates of karyotype evolution provide excellent models in which to study the role of chromosome rearrangements in a disease and evolutionary context. The speciose family Dasyuridae displays remarkable karyotypic conservation, with all species examined to date possessing nearly identical karyotypes. Despite the seemingly high degree of chromosome stability within this family, they appear prone to developing tumours, including transmissible devil facial tumours. In contrast, chromosome rearrangements have been frequent in the evolution of the species-rich family Macropodidae, which displays a high level of karyotypic diversity. In particular, the genus Petrogale (rock-wallabies) displays an extraordinary level of chromosome rearrangement among species. For six parapatric Petrogale species, it appears that speciation has essentially been caught in the act, providing an opportunity to determine whether chromosomal rearrangements are a cause or consequence of speciation in this system. This review highlights the reasons that these two marsupial families are excellent models for testing hypotheses for hotspots of chromosome rearrangement and deciphering the role of chromosome rearrangements in disease and speciation.


Assuntos
Aberrações Cromossômicas , Quebra Cromossômica , Cromossomos de Mamíferos/genética , Rearranjo Gênico/genética , Macropodidae/genética , Neoplasias/genética , Animais , Evolução Biológica , Modelos Animais de Doenças , Feminino , Cariótipo , Masculino
11.
Gen Comp Endocrinol ; 244: 130-138, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-26431612

RESUMO

Studies of chromosomes from monotremes and marsupials endemic to Australasia have provided important insight into the evolution of their genomes as well as uncovering fundamental differences in their sex determination/differentiation pathways. Great advances have been made this century into solving the mystery of the complicated sex chromosome system in monotremes. Monotremes possess multiple different X and Y chromosomes and a candidate sex determining gene has been identified. Even greater advancements have been made for marsupials, with reconstruction of the ancestral karyotype enabling the evolutionary history of marsupial chromosomes to be determined. Furthermore, the study of sex chromosomes in intersex marsupials has afforded insight into differences in the sexual differentiation pathway between marsupials and eutherians, together with experiments showing the insensitivity of the mammary glands, pouch and scrotum to exogenous hormones, led to the hypothesis that there is a gene (or genes) on the X chromosome responsible for the development of either pouch or scrotum. This review highlights the major advancements made towards understanding chromosome evolution and how this has impacted on our understanding of sex determination and differentiation in these interesting mammals.


Assuntos
Evolução Biológica , Marsupiais/genética , Monotremados/genética , Monotremados/fisiologia , Cromossomos Sexuais/genética , Animais , Feminino , Masculino , Marsupiais/fisiologia , Análise para Determinação do Sexo
12.
BMC Genomics ; 17: 447, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27286959

RESUMO

BACKGROUND: Squamates (lizards and snakes) are a speciose lineage of reptiles displaying considerable karyotypic diversity, particularly among lizards. Understanding the evolution of this diversity requires comparison of genome organisation between species. Although the genomes of several squamate species have now been sequenced, only the green anole lizard has any sequence anchored to chromosomes. There is only limited gene mapping data available for five other squamates. This makes it difficult to reconstruct the events that have led to extant squamate karyotypic diversity. The purpose of this study was to anchor the recently sequenced central bearded dragon (Pogona vitticeps) genome to chromosomes to trace the evolution of squamate chromosomes. Assigning sequence to sex chromosomes was of particular interest for identifying candidate sex determining genes. RESULTS: By using two different approaches to map conserved blocks of genes, we were able to anchor approximately 42 % of the dragon genome sequence to chromosomes. We constructed detailed comparative maps between dragon, anole and chicken genomes, and where possible, made broader comparisons across Squamata using cytogenetic mapping information for five other species. We show that squamate macrochromosomes are relatively well conserved between species, supporting findings from previous molecular cytogenetic studies. Macrochromosome diversity between members of the Toxicofera clade has been generated by intrachromosomal, and a small number of interchromosomal, rearrangements. We reconstructed the ancestral squamate macrochromosomes by drawing upon comparative cytogenetic mapping data from seven squamate species and propose the events leading to the arrangements observed in representative species. In addition, we assigned over 8 Mbp of sequence containing 219 genes to the Z chromosome, providing a list of genes to begin testing as candidate sex determining genes. CONCLUSIONS: Anchoring of the dragon genome has provided substantial insight into the evolution of squamate genomes, enabling us to reconstruct ancestral macrochromosome arrangements at key positions in the squamate phylogeny, demonstrating that fusions between macrochromosomes or fusions of macrochromosomes and microchromosomes, have played an important role during the evolution of squamate genomes. Assigning sequence to the sex chromosomes has identified NR5A1 as a promising candidate sex determining gene in the dragon.


Assuntos
Cromossomos , Evolução Molecular , Genoma , Genômica , Lagartos/genética , Animais , Galinhas/genética , Mapeamento Cromossômico , Feminino , Genômica/métodos , Hibridização in Situ Fluorescente , Cariótipo , Masculino , Cromossomos Sexuais , Processos de Determinação Sexual/genética
13.
Immunogenetics ; 68(9): 719-31, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27255409

RESUMO

Interleukins are a group of cytokines with complex immunomodulatory functions that are important for regulating immunity in vertebrate species. Reptiles and mammals last shared a common ancestor more than 350 million years ago, so it is not surprising that low sequence identity has prevented divergent interleukin genes from being identified in the central bearded dragon lizard, Pogona vitticeps, in its genome assembly. To determine the complete nucleotide sequences of key interleukin genes, we constructed full-length transcripts, using the Trinity platform, from short paired-end read RNA sequences from stimulated spleen cells. De novo transcript reconstruction and analysis allowed us to identify interleukin genes that are missing from the published P. vitticeps assembly. Identification of key cytokines in P. vitticeps will provide insight into the essential molecular mechanisms and evolution of interleukin gene families and allow for characterization of the immune response in a lizard for comparison with mammals.


Assuntos
Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Interleucinas/genética , Lagartos/genética , Análise de Sequência de RNA/métodos , Transcriptoma/genética , Sequência de Aminoácidos , Animais , Perfilação da Expressão Gênica , Homologia de Sequência de Aminoácidos , Software
14.
PLoS Genet ; 9(7): e1003635, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874231

RESUMO

X chromosome inactivation in eutherian mammals has been thought to be tightly controlled, as expected from a mechanism that compensates for the different dosage of X-borne genes in XX females and XY males. However, many X genes escape inactivation in humans, inactivation of the X in marsupials is partial, and the unrelated sex chromosomes of monotreme mammals have incomplete and gene-specific inactivation of X-linked genes. The bird ZW sex chromosome system represents a third independently evolved amniote sex chromosome system with dosage compensation, albeit partial and gene-specific, via an unknown mechanism (i.e. upregulation of the single Z in females, down regulation of one or both Zs in males, or a combination). We used RNA-fluorescent in situ hybridization (RNA-FISH) to demonstrate, on individual fibroblast cells, inactivation of 11 genes on the chicken Z and 28 genes on the X chromosomes of platypus. Each gene displayed a reproducible frequency of 1Z/1X-active and 2Z/2X-active cells in the homogametic sex. Our results indicate that the probability of inactivation is controlled on a gene-by-gene basis (or small domains) on the chicken Z and platypus X chromosomes. This regulatory mechanism must have been exapted independently to the non-homologous sex chromosomes in birds and mammals in response to an over-expressed Z or X in the homogametic sex, highlighting the universal importance that (at least partial) silencing plays in the evolution on amniote dosage compensation and, therefore, the differentiation of sex chromosomes.


Assuntos
Evolução Biológica , Galinhas/genética , Ornitorrinco/genética , Cromossomos Sexuais/genética , Inativação do Cromossomo X/genética , Animais , Galinhas/fisiologia , Mecanismo Genético de Compensação de Dose , Feminino , Genes Ligados ao Cromossomo X , Humanos , Masculino , Ornitorrinco/fisiologia , Transcrição Gênica
15.
BMC Genomics ; 16: 535, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26194104

RESUMO

BACKGROUND: Major histocompatibility complex (MHC) class I genes are found in the genomes of all jawed vertebrates. The evolution of this gene family is closely tied to the evolution of the vertebrate genome. Family members are frequently found in four paralogous regions, which were formed in two rounds of genome duplication in the early vertebrates, but in some species class Is have been subject to additional duplication or translocation, creating additional clusters. The gene family is traditionally grouped into two subtypes: classical MHC class I genes that are usually MHC-linked, highly polymorphic, expressed in a broad range of tissues and present endogenously-derived peptides to cytotoxic T-cells; and non-classical MHC class I genes generally have lower polymorphism, may have tissue-specific expression and have evolved to perform immune-related or non-immune functions. As immune genes can evolve rapidly and are subject to different selection pressure, we hypothesised that there may be divergent, as yet unannotated or uncharacterised class I genes. RESULTS: Application of a novel method of sensitive genome searching of available vertebrate genome sequences revealed a new, extensive sub-family of divergent MHC class I genes, denoted as UT, which has not previously been characterized. These class I genes are found in both American and Australian marsupials, and in monotremes, at an evolutionary chromosomal breakpoint, but are not present in non-mammalian genomes and have been lost from the eutherian lineage. We show that UT family members are expressed in the thymus of the gray short-tailed opossum and in other immune tissues of several Australian marsupials. Structural homology modelling shows that the proteins encoded by this family are predicted to have an open, though short, antigen-binding groove. CONCLUSIONS: We have identified a novel sub-family of putatively non-classical MHC class I genes that are specific to marsupials and monotremes. This family was present in the ancestral mammal and is found in extant marsupials and monotremes, but has been lost from the eutherian lineage. The function of this family is as yet unknown, however, their predicted structure may be consistent with presentation of antigens to T-cells.


Assuntos
Evolução Molecular , Genes MHC Classe I , Marsupiais/genética , Monotremados/genética , Sequência de Aminoácidos , Animais , Austrália , Sequência de Bases , Genoma , Humanos , Filogenia
16.
Chromosoma ; 123(3): 201-16, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24664317

RESUMO

A great deal of diversity in chromosome number and arrangement is observed across the amniote phylogeny. Understanding how this diversity is generated is important for determining the role of chromosomal rearrangements in generating phenotypic variation and speciation. Gaining this understanding is achieved by reconstructing the ancestral genome arrangement based on comparisons of genome organization of extant species. Ancestral karyotypes for several amniote lineages have been reconstructed, mainly from cross-species chromosome painting data. The availability of anchored whole genome sequences for amniote species has increased the evolutionary depth and confidence of ancestral reconstructions from those made solely from chromosome painting data. Nonetheless, there are still several key lineages where the appropriate data required for ancestral reconstructions is lacking. This review highlights the progress that has been made towards understanding the chromosomal changes that have occurred during amniote evolution and the reconstruction of ancestral karyotypes.


Assuntos
Cromossomos/genética , Evolução Molecular , Vertebrados/genética , Animais , Coloração Cromossômica , Humanos , Filogenia , Vertebrados/classificação
17.
Annu Rev Genomics Hum Genet ; 13: 207-22, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22657390

RESUMO

A fatal contagious cancer is driving an entire species to extinction. Comparative genomics will unravel the origin and evolution of devil facial tumor disease (DFTD). The DFTD allograft arose from a Schwann cell in a female Tasmanian devil more than 15 years ago; since then, the tumor has passed through at least 100,000 hosts, evolving and mutating along the way. Tumor genome sequencing and molecular cytogenetic technologies now allow direct comparisons of candidate genes involved in tumorigenesis in human cancers. As a stable transmissible cancer, DFTD provides unique insights into cancer development, progression, and immune evasion and is likely to help increase our understanding of human cancer. In addition, these studies provide hope for discoveries of drug targets or vaccine candidates that will prevent the extinction of this iconic Australian marsupial.


Assuntos
Neoplasias Faciais/veterinária , Marsupiais/genética , Animais , Espécies em Perigo de Extinção , Neoplasias Faciais/genética , Neoplasias Faciais/imunologia , Genética Populacional , Genoma , Humanos , Análise de Sequência de DNA , Tasmânia , Evasão Tumoral
18.
PLoS Genet ; 8(2): e1002483, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22359511

RESUMO

Devil facial tumour disease (DFTD) is a fatal, transmissible malignancy that threatens the world's largest marsupial carnivore, the Tasmanian devil, with extinction. First recognised in 1996, DFTD has had a catastrophic effect on wild devil numbers, and intense research efforts to understand and contain the disease have since demonstrated that the tumour is a clonal cell line transmitted by allograft. We used chromosome painting and gene mapping to deconstruct the DFTD karyotype and determine the chromosome and gene rearrangements involved in carcinogenesis. Chromosome painting on three different DFTD tumour strains determined the origins of marker chromosomes and provided a general overview of the rearrangement in DFTD karyotypes. Mapping of 105 BAC clones by fluorescence in situ hybridisation provided a finer level of resolution of genome rearrangements in DFTD strains. Our findings demonstrate that only limited regions of the genome, mainly chromosomes 1 and X, are rearranged in DFTD. Regions rearranged in DFTD are also highly rearranged between different marsupials. Differences between strains are limited, reflecting the unusually stable nature of DFTD. Finally, our detailed maps of both the devil and tumour karyotypes provide a physical framework for future genomic investigations into DFTD.


Assuntos
Mapeamento Cromossômico , Neoplasias Faciais/veterinária , Genoma , Marsupiais/genética , Doenças dos Animais/genética , Doenças dos Animais/transmissão , Animais , Coloração Cromossômica , Células Clonais , Neoplasias Faciais/genética , Rearranjo Gênico , Cariotipagem , Transplante de Neoplasias , Especificidade da Espécie
19.
Nature ; 453(7192): 175-83, 2008 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-18464734

RESUMO

We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation.


Assuntos
Evolução Molecular , Genoma/genética , Ornitorrinco/genética , Animais , Composição de Bases , Dentição , Feminino , Impressão Genômica/genética , Humanos , Imunidade/genética , Masculino , Mamíferos/genética , MicroRNAs/genética , Proteínas do Leite/genética , Filogenia , Ornitorrinco/imunologia , Ornitorrinco/fisiologia , Receptores Odorantes/genética , Sequências Repetitivas de Ácido Nucleico/genética , Répteis/genética , Análise de Sequência de DNA , Espermatozoides/metabolismo , Peçonhas/genética , Zona Pelúcida/metabolismo
20.
BMC Evol Biol ; 13: 258, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24261750

RESUMO

BACKGROUND: The increasing number of assembled mammalian genomes makes it possible to compare genome organisation across mammalian lineages and reconstruct chromosomes of the ancestral marsupial and therian (marsupial and eutherian) mammals. However, the reconstruction of ancestral genomes requires genome assemblies to be anchored to chromosomes. The recently sequenced tammar wallaby (Macropus eugenii) genome was assembled into over 300,000 contigs. We previously devised an efficient strategy for mapping large evolutionarily conserved blocks in non-model mammals, and applied this to determine the arrangement of conserved blocks on all wallaby chromosomes, thereby permitting comparative maps to be constructed and resolve the long debated issue between a 2n = 14 and 2n = 22 ancestral marsupial karyotype. RESULTS: We identified large blocks of genes conserved between human and opossum, and mapped genes corresponding to the ends of these blocks by fluorescence in situ hybridization (FISH). A total of 242 genes was assigned to wallaby chromosomes in the present study, bringing the total number of genes mapped to 554 and making it the most densely cytogenetically mapped marsupial genome. We used these gene assignments to construct comparative maps between wallaby and opossum, which uncovered many intrachromosomal rearrangements, particularly for genes found on wallaby chromosomes X and 3. Expanding comparisons to include chicken and human permitted the putative ancestral marsupial (2n = 14) and therian mammal (2n = 19) karyotypes to be reconstructed. CONCLUSIONS: Our physical mapping data for the tammar wallaby has uncovered the events shaping marsupial genomes and enabled us to predict the ancestral marsupial karyotype, supporting a 2n = 14 ancestor. Futhermore, our predicted therian ancestral karyotype has helped to understand the evolution of the ancestral eutherian genome.


Assuntos
Evolução Biológica , Macropodidae/genética , Marsupiais/genética , Gambás/genética , Animais , Galinhas/genética , Mapeamento Cromossômico , Genoma , Humanos , Cariótipo , Mamíferos/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa