RESUMO
Previous analyses suggest that children with tuberculosis (TB) are no more or no less likely to have multidrug (MDR)- or rifampicin-resistant (RR)-TB than adults. However, the availability of new data, particularly for high MDR/RR-TB burden countries, suggest updates of country-specific estimates are warranted.We used data from population-representative surveys and surveillance collected between 2000 and 2018 to compare the odds ratio of MDR/RR-TB among children (aged <15 years) with TB, compared to the odds of MDR/RR-TB among adults (aged ≥15 years) with TB.In most settings (45 out of 55 countries), and globally as a whole, there is no evidence that age is associated with odds of MDR/RR-TB. However, in some settings, such as former Soviet Union countries in general, and Georgia, Kazakhstan, Lithuania, Tajikistan and Uzbekistan in particular, as well as Peru, MDR/RR-TB is positively associated with age ≥15 years. Meanwhile, in Western Europe in general, and the United Kingdom, Poland, Finland and Luxembourg in particular, MDR/RR-TB is positively associated with age <15 years. 16 countries had sufficient data to compare over time between 2000-2011 and 2012-2018, with evidence for decreases in the odds ratio in children compared to adults in Germany, Kazakhstan and the United States of America.Our results support findings that in most settings a child with TB is as likely as an adult with TB to have MDR/RR-TB. However, setting-specific heterogeneity requires further investigation. Furthermore, the odds ratio for MDR/RR-TB in children compared to adults is generally either stable or decreasing. There are important gaps in detection, recording and reporting of drug resistance among paediatric TB cases, limiting our understanding of transmission risks and measures needed to combat the global TB epidemic.
Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Adolescente , Adulto , Antituberculosos/uso terapêutico , Criança , Europa (Continente) , Finlândia , Alemanha , Humanos , Peru , Polônia , Rifampina/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Reino UnidoRESUMO
BACKGROUND: The surveillance of drug resistance among tuberculosis (TB) patients is central to combatting the global TB epidemic and preventing the spread of antimicrobial resistance. Isoniazid and rifampicin are two of the most powerful first-line anti-TB medicines, and resistance to either of them increases the risk of treatment failure, relapse, or acquisition of resistance to other drugs. The global prevalence of rifampicin resistance is well documented, occurring in 3.4% (95% CI 2.5%-4.4%) of new TB patients and 18% (95% CI 7.6%-31%) of previously treated TB patients in 2018, whereas the prevalence of isoniazid resistance at global and regional levels is less understood. In 2018, the World Health Organization (WHO) recommended a modified 6-month treatment regimen for people with isoniazid-resistant, rifampicin-susceptible TB (Hr-TB), which includes rifampicin, pyrazinamide, ethambutol, and levofloxacin. We estimated the global prevalence of Hr-TB among TB patients and investigated associated phenotypic and genotypic drug resistance patterns. METHODS AND FINDINGS: Aggregated drug resistance data reported to WHO from either routine continuous surveillance or nationally representative periodic surveys of TB patients for the period 2003-2017 were reviewed. Isoniazid data were available from 156 countries or territories for 211,753 patients. Among these, the global prevalence of Hr-TB was 7.4% (95% CI 6.5%-8.4%) among new TB patients and 11.4% (95% CI 9.4%-13.4%) among previously treated TB patients. Additional data on pyrazinamide and levofloxacin resistance were available from 6 countries (Azerbaijan, Bangladesh, Belarus, Pakistan, the Philippines, and South Africa). There were no cases of resistance to both pyrazinamide and levofloxacin among Hr-TB patients, except for the Philippines (1.8%, 95% CI 0.2-6.4) and Belarus (5.3%, 95% CI 0.1-26.0). Sequencing data for all genomic regions involved in isoniazid resistance were available for 4,563 patients. Among the 1,174 isolates that were resistant by either phenotypic testing or sequencing, 78.6% (95% CI 76.1%-80.9%) had resistance-conferring mutations in the katG gene and 14.6% (95% CI 12.7%-16.8%) in both katG and the inhA promoter region. For 6.8% (95% CI 5.4%-8.4%) of patients, mutations occurred in the inhA promoter alone, for whom an increased dose of isoniazid may be considered. The main limitations of this study are that most analyses were performed at the national rather than individual patient level and that the quality of laboratory testing may vary between countries. CONCLUSIONS: In this study, the prevalence of Hr-TB among TB patients was higher than the prevalence of rifampicin resistance globally. Many patients with Hr-TB would be missed by current diagnostic algorithms driven by rifampicin testing, highlighting the need for new rapid molecular technologies to ensure access to appropriate treatment and care. The low prevalence of resistance to pyrazinamide and fluoroquinolones among patients with Hr-TB provides further justification for the recommended modified treatment regimen.
Assuntos
Antituberculosos/uso terapêutico , Análise de Dados , Perfil Genético , Internacionalidade , Isoniazida/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/genética , Estudos Transversais , Humanos , Prevalência , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Sequenciamento Completo do Genoma/métodosRESUMO
Males are at an increased risk of tuberculosis (TB) disease compared to females. Additionally, several risk factors for multidrug-resistant (MDR) or rifampicin-resistant (RR) TB disease are more common in males, hence male TB patients may have a higher relative risk of MDR/RR-TB than female TB patients.We used sex-disaggregated data of TB patients reported to the World Health Organization for 106 countries to calculate male-to-female (M:F) risk ratios of having MDR/RR-TB.There was no evidence of either sex being more at risk of MDR/RR-TB in 81% (86 out of 106) of countries, with an overall random-effects weighted M:F risk ratio of 1.04 (95% CI 0.97-1.11). In 12% (13 out of 106) of countries there was evidence that males were more at risk, while in 7% (seven out of 106), females were more at risk. The risk of having TB that was MDR/RR increased for males compared to females as MDR/RR-TB incidence increased, and was higher for males than females in the former Soviet Union, where the risk ratio was 1.16 (1.06-1.28). Conversely, the risk increased for females compared to males as gross domestic product purchase power parity increased, and was higher for females than males in countries where the majority of TB burden was found in the foreign-born population, where the risk ratio was 0.84 (0.75-0.94).In general, the risk of MDR/RR-TB, among those with TB, is the same for males as for females. However, males in higher MDR/RR-TB burden countries, particularly the former Soviet Union, face an increased risk that their infection is MDR/RR-TB, highlighting the need for a sex-differentiated approach to TB case-finding and care.
Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Antituberculosos/uso terapêutico , Feminino , Humanos , Masculino , Razão de Chances , Rifampina , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Organização Mundial da SaúdeRESUMO
As we move into the era of the Sustainable Development Goals (SDGs), the World Health Organization (WHO) has developed the End TB strategy 2016-2035 with a goal to end the global epidemic of tuberculosis (TB) by 2035. Achieving the targets laid out in the Strategy will require strengthening of the whole TB diagnosis and treatment cascade, including improved case detection, the establishment of universal drug susceptibility testing and rapid treatment initiation. An estimated 3.9% of new TB cases and 21% of previously treated cases had rifampicin-resistant (RR) or multidrug-resistant (MDR) TB in 2015. These levels have remained stable over time, although limited data are available from major high burden settings. In addition to the emergence of drug resistance due to inadequate treatment, there is growing evidence that direct transmission is a large contributor to the RR/MDR-TB epidemic. Only 340,000 of the estimated 580,000 incident cases of RR/MDR-TB were notified to WHO in 2015. Among these, only 125,000 were initiated on second-line treatment. RR/MDR-TB epidemics are likely to be driven by direct transmission. The most important risk factor for MDR-TB is a history of previous treatment. Other risk factors vary according to setting but can include hospitalisation, incarceration and HIV infection. Children have the same risk of MDR-TB as adults and represent a diagnostic and treatment challenge. Rapid molecular technologies have revolutionized the diagnosis of drug-resistant TB. Until capacity can be established to test every TB patient for rifampicin resistance, countries should focus on gradually expanding their coverage of testing. DNA sequencing technologies are being increasingly incorporated into patient management and drug resistance surveillance. They offer additional benefits over conventional culture-based phenotypic testing, including a faster turn-around time for results, assessment of resistance patterns to a range of drugs, and investigation of strain clustering and transmission.
Assuntos
Epidemias/prevenção & controle , Tuberculose Extensivamente Resistente a Medicamentos/epidemiologia , Tuberculose Extensivamente Resistente a Medicamentos/transmissão , Mycobacterium tuberculosis/genética , Tuberculose Pulmonar/epidemiologia , Tuberculose Pulmonar/transmissão , Adulto , Antituberculosos/uso terapêutico , Criança , Farmacorresistência Bacteriana Múltipla/genética , Tuberculose Extensivamente Resistente a Medicamentos/diagnóstico , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Hospitalização/estatística & dados numéricos , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/patogenicidade , Rifampina/uso terapêutico , Fatores de Risco , Análise de Sequência de DNA , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/tratamento farmacológico , Organização Mundial da SaúdeAssuntos
Antituberculosos/uso terapêutico , Farmacorresistência Bacteriana , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Saúde Global , História do Século XX , História do Século XXI , Humanos , Vigilância da População , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/históriaRESUMO
To review the latest information about levels of anti-tuberculosis (TB) drug resistance in the European Region of the World Health Organization (WHO) and time-trends in multidrug-resistant TB (resistance to isoniazid and rifampicin; MDR-TB) over the past fifteen years. We analysed data on drug resistance among new and previously treated TB cases reported from 1997 to 2012. Data are collected in surveys of representative samples of TB patients or from surveillance systems based on diagnostic drug susceptibility testing. A total of 15.7% (95% confidence limits (CI): 9.5-21.9) of new and 45.3% (95%CI: 39.2-51.5) of previously treated TB cases are estimated to have MDR-TB in the Region. Extensively drug-resistant TB (MDR-TB and resistance to fluoroquinolones and second-line injectables; XDR-TB) had been reported by 38 of the 53 countries of the region (72%). The proportion of MDR-TB cases with XDR-TB is 11.4% (95%CI: 8.6-14.2). Between 1997 and 2012, population rates of MDR-TB declined in Estonia, Latvia and Germany and increased in the United Kingdom, Sweden and Tomsk Oblasts of the Russian Federation. Surveillance of drug resistance has been strengthened in the WHO European Region, which has the highest proportions of MDR-TB and XDR-TB ever reported globally. More complete data are needed particularly from the Russian Federation.
Assuntos
Antituberculosos/farmacologia , Tuberculose Extensivamente Resistente a Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Europa (Continente)/epidemiologia , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Humanos , Isoniazida/farmacologia , Testes de Sensibilidade Microbiana , Vigilância da População , Rifampina/farmacologia , Fatores de Tempo , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Organização Mundial da SaúdeRESUMO
Introduction: Tuberculosis (TB) remains a leading cause of mortality worldwide. We conducted this systematic review to understand the distribution of bovine and zoonotic tuberculosis in the World Health Organization (WHO)'s Southeast Asia Region (SEAR) and Western Pacific Region (WPR) to inform our understanding of the risk posed by this disease. Methods: A two-pronged strategy was used by evaluating data from peer-reviewed literature and official reports. A systematic search was conducted using a structured query in four databases (Web of Science, Scopus, Medline, and PubMed) to identify any reports of the occurrence of zoonotic TB. No language and time constraints were used during the search, but non-English language articles were later excluded. The official data were sourced from the World Organization for Animal Health's (WOAH) World Animal Health Information System (WAHIS) and WHO's global TB database. Results: The retrieved records from SEAR and WPR (n = 113) were screened for eligibility, and data about disease occurrence were extracted and tabulated. In SEAR, all of the five studies that conducted Mycobacterium speciation (5/6) in humans were from India, and the reported Mycobacterium species included M. tuberculosis, M. bovis, M. scrofulacium, M. kansasii, M. phlei, M. smegmatis and M. orygis. In WPR, Mycobacterium speciation investigations in humans were conducted in Australia (8), China (2), Japan (2), NewZealand (2) and Malaysia (1), and the reported Mycobacterium species included M. bovis, M. africanum and M. tuberculosis. Seven countries in WHO's SEAR have officially reported the occurrence of Mycobacterium bovis in their animals: Bangladesh, India, Indonesia, Myanmar, Nepal, Sri Lanka and Thailand. In WPR, the WAHIS information system includes reports of the identification of M. bovis from 11 countries - China, Fiji, Japan, Malaysia, Mongolia, New Zealand, the Philippines, the Republic of Korea, Singapore, Tonga and Viet Nam. In contrast, human zoonotic TB cases in the WHO database were only listed from Australia, Brunei Darussalam and Palau countries. Discussion: The available data suggests under-reporting of zoonotic TB in the regions. Efforts are required to strengthen zoonotic TB surveillance systems from both animal and human health sides to better understand the impact of zoonotic TB in order to take appropriate action to achieve the goal of ending the TB epidemic.
Assuntos
Tuberculose Bovina , Tuberculose , Organização Mundial da Saúde , Zoonoses , Animais , Bovinos , Sudeste Asiático/epidemiologia , Humanos , Zoonoses/epidemiologia , Tuberculose/epidemiologia , Tuberculose Bovina/epidemiologiaAssuntos
Fluoroquinolonas/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Antituberculosos/farmacologia , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Tuberculose Extensivamente Resistente a Medicamentos/epidemiologia , Humanos , Mutação , Mycobacterium tuberculosis , Filipinas/epidemiologia , Prevalência , Prognóstico , Inquéritos e Questionários , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologiaRESUMO
In 2020, almost half a million individuals developed rifampicin-resistant tuberculosis (RR-TB). We estimated the global burden of RR-TB over the lifetime of affected individuals. We synthesized data on incidence, case detection, and treatment outcomes in 192 countries (99.99% of global tuberculosis). Using a mathematical model, we projected disability-adjusted life years (DALYs) over the lifetime for individuals developing tuberculosis in 2020 stratified by country, age, sex, HIV, and rifampicin resistance. Here we show that incident RR-TB in 2020 was responsible for an estimated 6.9 (95% uncertainty interval: 5.5, 8.5) million DALYs, 44% (31, 54) of which accrued among TB survivors. We estimated an average of 17 (14, 21) DALYs per person developing RR-TB, 34% (12, 56) greater than for rifampicin-susceptible tuberculosis. RR-TB burden per 100,000 was highest in former Soviet Union countries and southern African countries. While RR-TB causes substantial short-term morbidity and mortality, nearly half of the overall disease burden of RR-TB accrues among tuberculosis survivors. The substantial long-term health impacts among those surviving RR-TB disease suggest the need for improved post-treatment care and further justify increased health expenditures to prevent RR-TB transmission.
Assuntos
Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Rifampina/farmacologia , Rifampina/uso terapêutico , Carga Global da Doença , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose/tratamento farmacológico , Tuberculose/epidemiologia , Tuberculose/prevenção & controle , Modelos Teóricos , Antituberculosos/farmacologia , Antituberculosos/uso terapêuticoRESUMO
Tuberculosis is second only to COVID-19 as a cause of death from a single infectious agent. In 2020, almost 10 million people were estimated to have developed tuberculosis and it caused 1·5 million deaths. Around a quarter of deaths caused by antimicrobial resistance are due to rifampicin-resistant tuberculosis. Antimicrobial resistance surveillance systems for many bacterial pathogens are still in the early stages of implementation in many countries, and do not yet allow for the estimation of disease burden at the national level. In this Personal View, we present the achievements, challenges, and way forward for the oldest and largest global antimicrobial resistance surveillance system. Hosted by WHO since 1994, the Global Project on Anti-Tuberculosis Drug Resistance Surveillance has served as a platform for the evaluation of the trends in anti-tuberculosis drug resistance for over 25 years at country, regional, and global levels. With an estimated 465 000 incident cases of multidrug-resistant and rifampicin-resistant tuberculosis in 2019, drug-resistant tuberculosis remains a public health crisis. The COVID-19 pandemic has reversed years of progress in providing essential tuberculosis services and reducing disease burden. The number of people diagnosed with drug-resistant tuberculosis has dropped by 22% since before the pandemic, and the number of patients provided with treatment for drug-resistant tuberculosis has dropped by 15%. Now more than ever, closing gaps in the detection of drug-resistant tuberculosis requires investment in research and development of new diagnostic tools and their rollout, expansion of sample transport systems, and the implementation of data connectivity solutions.
Assuntos
COVID-19 , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , COVID-19/epidemiologia , Humanos , Pandemias , Rifampina/farmacologia , Rifampina/uso terapêutico , Tuberculose/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologiaRESUMO
BACKGROUND: A national drug resistance survey (DRS) was implemented for the first time in Timor-Leste (TL) in 2019. The primary objective of the survey was to assess the prevalence of drug resistance among new and previously treated pulmonary TB patients in the country. METHODS: This nation-wide cross-sectional survey was conducted in 2019 targeting all new and previously treated sputum smear-positive pulmonary TB patients. Sputum samples were submitted to the National TB Reference Laboratory for confirmation of TB and to determine resistance to rifampicin by Xpert MTB/RIF. Culture was performed on solid media, and culture isolates of confirmed TB cases were shipped to the WHO Supranational TB Reference Laboratory in Chennai, India for whole genome sequencing (WGS). Survey summary statistics, data cross-tabulations and analysis of potential risk factors of rifampicin-resistant TB (RR-TB) were conducted using R statistical software (version 3.5.2). RESULTS: A total of 953 sputum-smear positive patients were enrolled, of which 917 were confirmed as positive for TB by either Xpert MTB/RIF or culture. An electronic web-based system was used for entry and storage of the data. Rifampicin resistance was detected among 0.6% (95% CI 0.2-1.3) of new cases and 2.7% (95% CI 0.5- 8.2) of previously treated cases. WGS was conducted for validation purposes on 65 randomly selected isolates (29% of RR-TB (2/7) and 7% of RS-TB (63/910) by Xpert MTB/RIF or pDST). The original test results agreed with the WGS validation results for 62/64 isolates (97%). CONCLUSION: The prevalence of RR-TB in Timor-Leste is relatively low compared to the estimated proportions of RR-TB in the WHO South-East Asia Region (2.5% [95% CI 1.9-3.3] among new cases and 14% [95% CI 7.7-21] among previously treated cases). The rapid sputum collection and transportation mechanism implemented in the survey demonstrates its feasibility in low resource settings and should be replicated for routinely transporting TB specimens from microscopy labs to GeneXpert sites. Establishment of in-country capacity for rapid molecular diagnostics for both first- and second-line DST is an immediate need for achieving universal drug susceptibility testing (DST) to guide appropriate patient management.
Assuntos
Antibióticos Antituberculose , Mycobacterium tuberculosis , Tuberculose Pulmonar , Antibióticos Antituberculose/farmacologia , Antibióticos Antituberculose/uso terapêutico , Estudos Transversais , Farmacorresistência Bacteriana , Humanos , Índia/epidemiologia , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Rifampina/farmacologia , Rifampina/uso terapêutico , Sensibilidade e Especificidade , Timor-Leste/epidemiologia , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/epidemiologiaRESUMO
Mycobacterium tuberculosis is a clonal pathogen proposed to have co-evolved with its human host for millennia, yet our understanding of its genomic diversity and biogeography remains incomplete. Here we use a combination of phylogenetics and dimensionality reduction to reevaluate the population structure of M. tuberculosis, providing an in-depth analysis of the ancient Indo-Oceanic Lineage 1 and the modern Central Asian Lineage 3, and expanding our understanding of Lineages 2 and 4. We assess sub-lineages using genomic sequences from 4939 pan-susceptible strains, and find 30 new genetically distinct clades that we validate in a dataset of 4645 independent isolates. We find a consistent geographically restricted or unrestricted pattern for 20 groups, including three groups of Lineage 1. The distribution of terminal branch lengths across the M. tuberculosis phylogeny supports the hypothesis of a higher transmissibility of Lineages 2 and 4, in comparison with Lineages 3 and 1, on a global scale. We define an expanded barcode of 95 single nucleotide substitutions that allows rapid identification of 69 M. tuberculosis sub-lineages and 26 additional internal groups. Our results paint a higher resolution picture of the M. tuberculosis phylogeny and biogeography.
Assuntos
Mycobacterium tuberculosis/classificação , Filogenia , Tuberculose/transmissão , Código de Barras de DNA Taxonômico , Evolução Molecular , Genoma Bacteriano/genética , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Filogeografia , Polimorfismo de Nucleotídeo Único , Software , Tuberculose/microbiologiaRESUMO
The surveillance of drug resistance among tuberculosis (TB) patients is central to preventing the spread of antimicrobial resistance. The Democratic Republic of the Congo (DR Congo) is classified by the World Health Organization (WHO) as a country with a high burden of TB and multidrug-resistant TB (MDR-TB), but there are no nationally representative data on drug resistance. In 2016-2017, a national survey of TB patients was conducted in 108 microscopy centres across all 11 provinces of the country using innovative molecular approaches. Sputum samples were collected from 1,545 new and 163 previously treated patients. These were tested by the Xpert MTB/RIF assay, followed by targeted next-generation sequencing performed directly on sputum. The prevalence of rifampicin resistance was low, at 1.8% (95% CI: 1.0-3.2) among new and 17.3% (95% CI: 11.9-24.4) among previously treated patients. Resistance to pyrazinamide, fluoroquinolones and second-line injectables was also low. The prevalence of resistance to isoniazid among rifampicin-susceptible patients was higher, at 6.6% (95% CI: 4.4-9.8) among new and 8.7% (95% : 3.2-21.2) among previously treated patients. Diagnosing and treating isoniazid-resistant patients remains a challenge, given that many will be missed by the current national diagnostic algorithm that is driven by detecting rifampicin resistance by Xpert MTB/RIF. This is the first nationwide survey incorporating targeted sequencing directly on sputum. It serves as a proof-of-concept for other settings that do yet have rapid specimen transport networks or capacity to conduct culture.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Mycobacterium tuberculosis/genética , Escarro/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Estudos Transversais , República Democrática do Congo/epidemiologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Prevalência , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/genética , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/epidemiologia , Tuberculose Pulmonar/genéticaAssuntos
Infecções por HIV/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Controle de Doenças Transmissíveis , Comorbidade , Coleta de Dados , Interpretação Estatística de Dados , Bases de Dados Factuais , Epidemias , Saúde Global , Infecções por HIV/complicações , Soropositividade para HIV , Humanos , Infectologia/métodos , Cooperação Internacional , Tuberculose Resistente a Múltiplos Medicamentos/complicaçõesRESUMO
SETTING: Tuberculosis (TB) drug resistance survey was conducted in 2016-2017 to estimate the burden of drug-resistant TB in Côte d'Ivoire. DESIGN: A cross-sectional cluster-based survey was conducted. All eligible smear positive patients were interviewed using a structured questionnaire to collect clinical and sociodemographic information and tested by the Xpert Mycobacterium tuberculosis/rifampicin (MTB/RIF) assay. If resistant to rifampicin, solid and liquid cultures were performed. Phenotypic drug susceptibility testing (DST) was conducted in liquid medium for rifampicin, isoniazid, ethambutol, streptomycin, ofloxacin, and amikacin. RESULTS: Of the 1105 sputum smear positive patients enrolled, 995 new and 100 previously treated patients were positive for Mycobacterium tuberculosis complex by Xpert. Proportion of patients with rifampicin resistance was 4.6% (95% CI: 2.4-6.7) and 22% (95% CI: 13.7-30.3), respectively, for new and previously treated patients. Second-line DST results were available for most rifampicin-resistant patients. None were resistant to amikacin, only two were ofloxacin-resistant. Apart from the antecedent of previously treatment for TB, no other risk factors for rifampicin resistance were detected. CONCLUSION: Prevalence of rifampicin resistance among TB patients in Côte d'Ivoire is higher than that in other countries in the region. Surveillance of drug resistance, through an expanded GeneXpert network, and programmatic management of drug-resistant TB (PMDT) must be strengthened in Côte d'Ivoire.
RESUMO
BACKGROUND: In many countries, regular monitoring of the emergence of resistance to anti-tuberculosis drugs is hampered by the limitations of phenotypic testing for drug susceptibility. We therefore evaluated the use of genetic sequencing for surveillance of drug resistance in tuberculosis. METHODS: Population-level surveys were done in hospitals and clinics in seven countries (Azerbaijan, Bangladesh, Belarus, Pakistan, Philippines, South Africa, and Ukraine) to evaluate the use of genetic sequencing to estimate the resistance of Mycobacterium tuberculosis isolates to rifampicin, isoniazid, ofloxacin, moxifloxacin, pyrazinamide, kanamycin, amikacin, and capreomycin. For each drug, we assessed the accuracy of genetic sequencing by a comparison of the adjusted prevalence of resistance, measured by genetic sequencing, with the true prevalence of resistance, determined by phenotypic testing. FINDINGS: Isolates were taken from 7094 patients with tuberculosis who were enrolled in the study between November, 2009, and May, 2014. In all tuberculosis cases, the overall pooled sensitivity values for predicting resistance by genetic sequencing were 91% (95% CI 87-94) for rpoB (rifampicin resistance), 86% (74-93) for katG, inhA, and fabG promoter combined (isoniazid resistance), 54% (39-68) for pncA (pyrazinamide resistance), 85% (77-91) for gyrA and gyrB combined (ofloxacin resistance), and 88% (81-92) for gyrA and gyrB combined (moxifloxacin resistance). For nearly all drugs and in most settings, there was a large overlap in the estimated prevalence of drug resistance by genetic sequencing and the estimated prevalence by phenotypic testing. INTERPRETATION: Genetic sequencing can be a valuable tool for surveillance of drug resistance, providing new opportunities to monitor drug resistance in tuberculosis in resource-poor countries. Before its widespread adoption for surveillance purposes, there is a need to standardise DNA extraction methods, recording and reporting nomenclature, and data interpretation. FUNDING: Bill & Melinda Gates Foundation, United States Agency for International Development, Global Alliance for Tuberculosis Drug Development.
Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Vigilância da População , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Ásia/epidemiologia , DNA Bacteriano/genética , Farmacorresistência Bacteriana Múltipla/genética , Doenças Endêmicas , Europa (Continente)/epidemiologia , Saúde Global , Humanos , África do Sul/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologiaRESUMO
Mycobacterium tuberculosis is recognised as the primary cause of human tuberculosis worldwide. However, substantial evidence suggests that the burden of Mycobacterium bovis, the cause of bovine tuberculosis, might be underestimated in human beings as the cause of zoonotic tuberculosis. In 2013, results from a systematic review and meta-analysis of global zoonotic tuberculosis showed that the same challenges and concerns expressed 15 years ago remain valid. These challenges faced by people with zoonotic tuberculosis might not be proportional to the scientific attention and resources allocated in recent years to other diseases. The burden of zoonotic tuberculosis in people needs important reassessment, especially in areas where bovine tuberculosis is endemic and where people live in conditions that favour direct contact with infected animals or animal products. As countries move towards detecting the 3 million tuberculosis cases estimated to be missed annually, and in view of WHO's end TB strategy endorsed by the health authorities of WHO Member States in 2014 to achieve a world free of tuberculosis by 2035, we call on all tuberculosis stakeholders to act to accurately diagnose and treat tuberculosis caused by M bovis in human beings.
Assuntos
Mycobacterium bovis/isolamento & purificação , Tuberculose Bovina/epidemiologia , Tuberculose/epidemiologia , Zoonoses/epidemiologia , Animais , Bovinos , Humanos , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose/prevenção & controle , Tuberculose Bovina/diagnóstico por imagem , Tuberculose Bovina/prevenção & controle , Tuberculose Bovina/transmissãoRESUMO
BACKGROUND: Pyrazinamide and fluoroquinolones are essential antituberculosis drugs in new rifampicin-sparing regimens. However, little information about the extent of resistance to these drugs at the population level is available. METHODS: In a molecular epidemiology analysis, we used population-based surveys from Azerbaijan, Bangladesh, Belarus, Pakistan, and South Africa to investigate resistance to pyrazinamide and fluoroquinolones among patients with tuberculosis. Resistance to pyrazinamide was assessed by gene sequencing with the detection of resistance-conferring mutations in the pncA gene, and susceptibility testing to fluoroquinolones was conducted using the MGIT system. FINDINGS: Pyrazinamide resistance was assessed in 4972 patients. Levels of resistance varied substantially in the surveyed settings (3·0-42·1%). In all settings, pyrazinamide resistance was significantly associated with rifampicin resistance. Among 5015 patients who underwent susceptibility testing to fluoroquinolones, proportions of resistance ranged from 1·0-16·6% for ofloxacin, to 0·5-12·4% for levofloxacin, and 0·9-14·6% for moxifloxacin when tested at 0·5 µg/mL. High levels of ofloxacin resistance were detected in Pakistan. Resistance to moxifloxacin and gatifloxacin when tested at 2 µg/mL was low in all countries. INTERPRETATION: Although pyrazinamide resistance was significantly associated with rifampicin resistance, this drug may still be effective in 19-63% of patients with rifampicin-resistant tuberculosis. Even though the high level of resistance to ofloxacin found in Pakistan is worrisome because it might be the expression of extensive and unregulated use of fluoroquinolones in some parts of Asia, the negligible levels of resistance to fourth-generation fluoroquinolones documented in all survey sites is an encouraging finding. Rational use of this class of antibiotics should therefore be ensured to preserve its effectiveness. FUNDING: Bill & Melinda Gates Foundation, United States Agency for International Development, Global Alliance for Tuberculosis Drug Development.
Assuntos
Anti-Infecciosos/uso terapêutico , Antituberculosos/uso terapêutico , Fluoroquinolonas/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação , Vigilância da População , Pirazinamida/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Ásia , Humanos , Testes de Sensibilidade Microbiana , Estudos Retrospectivos , Rifampina/farmacologia , África do Sul , Tuberculose Pulmonar/tratamento farmacológicoRESUMO
BACKGROUND: Transboundary animal movements facilitate the spread of pathogens across large distances. Cross-border cattle trade is of economic and cultural importance in West Africa. This study explores the potential disease risk resulting from large-scale, cross-border cattle trade between Togo, Burkina Faso, Ghana, Benin, and Nigeria for the first time. METHODS AND PRINCIPAL FINDINGS: A questionnaire-based survey of livestock movements of 226 cattle traders was conducted in the 9 biggest cattle markets of northern Togo in February-March 2012. More than half of the traders (53.5%) operated in at least one other country. Animal flows were stochastically simulated based on reported movements and the risk of regional disease spread assessed. More than three quarters (79.2%, range: 78.1-80.0%) of cattle flowing into the market system originated from other countries. Through the cattle market system of northern Togo, non-neighbouring countries were connected via potential routes for disease spread. Even for diseases with low transmissibility and low prevalence in a given country, there was a high risk of disease introduction into other countries. CONCLUSIONS: By stochastically simulating data collected by interviewing cattle traders in northern Togo, this study identifies potential risks for regional disease spread in West Africa through cross-border cattle trade. The findings highlight that surveillance for emerging infectious diseases as well as control activities targeting endemic diseases in West Africa are likely to be ineffective if only conducted at a national level. A regional approach to disease surveillance, prevention and control is essential.