Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 33(2): 2669-2679, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30307768

RESUMO

Congenital disorders of glycosylation are severe inherited diseases in which aberrant protein glycosylation is a hallmark. Transmembrane protein 165 (TMEM165) is a novel Golgi transmembrane protein involved in type II congenital disorders of glycosylation. Although its biologic function is still a controversial issue, we have demonstrated that the Golgi glycosylation defect due to TMEM165 deficiency resulted from a Golgi Mn2+ homeostasis defect. The goal of this study was to delineate the cellular pathway by which extracellular Mn2+ rescues N-glycosylation in TMEM165 knockout (KO) cells. We first demonstrated that after extracellular exposure, Mn2+ uptake by HEK293 cells at the plasma membrane did not rely on endocytosis but was likely done by plasma membrane transporters. Second, we showed that the secretory pathway Ca2+-ATPase 1, also known to mediate the influx of cytosolic Mn2+ into the lumen of the Golgi apparatus, is not crucial for the Mn2+-induced rescue glycosylation of lysosomal-associated membrane protein 2 (LAMP2). In contrast, our results demonstrate the involvement of cyclopiazonic acid- and thapsigargin (Tg)-sensitive pumps in the rescue of TMEM165-associated glycosylation defects by Mn2+. Interestingly, overexpression of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) 2b isoform in TMEM165 KO cells partially rescues the observed LAMP2 glycosylation defect. Overall, this study indicates that the rescue of Golgi N-glycosylation defects in TMEM165 KO cells by extracellular Mn2+ involves the activity of Tg and cyclopiazonic acid-sensitive pumps, probably the SERCA pumps.-Houdou, M., Lebredonchel, E., Garat, A., Duvet, S., Legrand, D., Decool, V., Klein, A., Ouzzine, M., Gasnier, B., Potelle, S., Foulquier, F. Involvement of thapsigargin- and cyclopiazonic acid-sensitive pumps in the rescue of TMEM165-associated glycosylation defects by Mn2+.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Indóis/farmacologia , Manganês/farmacologia , Proteínas de Membrana/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Tapsigargina/farmacologia , Antiporters , Transporte Biológico , Cálcio/metabolismo , Proteínas de Transporte de Cátions , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/patologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Inibidores Enzimáticos/farmacologia , Glicosilação , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Células HEK293 , Homeostase , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/genética , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética
2.
Biochim Biophys Acta Gen Subj ; 1862(3): 394-402, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29108953

RESUMO

The Golgi ion homeostasis is tightly regulated to ensure essential cellular processes such as glycosylation, yet our understanding of this regulation remains incomplete. Gdt1p is a member of the conserved Uncharacterized Protein Family (UPF0016). Our previous work suggested that Gdt1p may function in the Golgi by regulating Golgi Ca2+/Mn2+ homeostasis. NMR structural analysis of the polymannan chains isolated from yeasts showed that the gdt1Δ mutant cultured in presence of high Ca2+ concentration, as well as the pmr1Δ and gdt1Δ/pmr1Δ strains presented strong late Golgi glycosylation defects with a lack of α-1,2 mannoses substitution and α-1,3 mannoses termination. The addition of Mn2+ confirmed the rescue of these defects. Interestingly, our structural data confirmed that the glycosylation defect in pmr1Δ could also completely be suppressed by the addition of Ca2+. The use of Pmr1p mutants either defective for Ca2+ or Mn2+ transport or both revealed that the suppression of the observed glycosylation defect in pmr1Δ strains by the intraluminal Golgi Ca2+ requires the activity of Gdt1p. These data support the hypothesis that Gdt1p, in order to sustain the Golgi glycosylation process, imports Mn2+ inside the Golgi lumen when Pmr1p exclusively transports Ca2+. Our results also reinforce the functional link between Gdt1p and Pmr1p as we highlighted that Gdt1p was a Mn2+ sensitive protein whose abundance was directly dependent on the nature of the ion transported by Pmr1p. Finally, this study demonstrated that the aspartic residues of the two conserved motifs E-x-G-D-[KR], likely constituting the cation binding sites of Gdt1p, play a crucial role in Golgi glycosylation and hence in Mn2+/Ca2+transport.


Assuntos
Canais de Cálcio/fisiologia , Cálcio/metabolismo , Complexo de Golgi/metabolismo , Manganês/metabolismo , Mananas/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Canais de Cálcio/química , Canais de Cálcio/genética , ATPases Transportadoras de Cálcio/metabolismo , Sequência Conservada , Glicosilação , Transporte de Íons , Chaperonas Moleculares/metabolismo , Monossacarídeos/metabolismo , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa