Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Theor Appl Genet ; 137(3): 56, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386181

RESUMO

KEY MESSAGE: A new OrAnom1 gene introgressed in cultivated sunflower from wild Helianthus anomalus confers late post-attachment resistance to Orobanche cumana race G and maps to a target interval in Chromosome 4 where two receptor-like kinases (RLKs) have been identified in the H. anomalus genome as putative candidates. Sunflower broomrape is a parasitic weed that infects sunflower (Helianthus annuus L.) roots causing severe yield losses. Breeding for resistance is the most effective and sustainable control method. In this study, we report the identification, introgression, and genetic and physiological characterization of a new sunflower source of resistance to race G of broomrape developed from the wild annual sunflower H. anomalus (accession PI 468642). Crosses between PI 468642 and the susceptible line P21 were carried out, and the genetic study was conducted in BC1F1, BC1F2, and its derived BC1F3 populations. A BC1F5 germplasm named ANOM1 was developed through selection for race G resistance and resemblance to cultivated sunflower. The resistant trait showed monogenic and dominant inheritance. The gene, named OrAnom1, was mapped to Chromosome 4 within a 1.2 cM interval and co-segregated with 7 SNP markers. This interval corresponds to a 1.32 Mb region in the sunflower reference genome, housing a cluster of receptor-like kinase and receptor-like protein (RLK-RLP) genes. Notably, the analysis of the H. anomalus genome revealed the absence of RLPs in the OrAnom1 target region but featured two RLKs as possible OrAnom1 candidates. Rhizotron and histological studies showed that OrAnom1 determines a late post-attachment resistance mechanism. Broomrape can establish a vascular connection with the host, but parasite growth is stopped before tubercle development, showing phenolic compounds accumulation and tubercle necrosis. ANOM1 will contribute to broadening the genetic basis of broomrape resistance in the cultivated sunflower pool and to a better understanding of the molecular basis of the sunflower-broomrape interaction.


Assuntos
Helianthus , Orobanche , Helianthus/genética , Melhoramento Vegetal , Necrose , Fenóis
2.
Theor Appl Genet ; 135(2): 501-525, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34741641

RESUMO

KEY MESSAGE: OrDeb2 confers post-attachment resistance to Orobanche cumana and is located in a 1.38 Mbp genomic interval containing a cluster of receptor-like kinase and receptor-like protein genes with nine high-confidence candidates. Sunflower broomrape is a holoparasitic angiosperm that parasitizes on sunflower roots, severely constraining crop yield. Breeding for resistance is the most effective method of control. OrDeb2 is a dominant resistance gene introgressed into cultivated sunflower from a wild-related species that confers resistance to highly virulent broomrape races. The objectives of this study were as follows: (i) locate OrDeb2 into the sunflower genome and determine putative candidate genes and (ii) characterize its underlying resistance mechanism. A segregating population from a cross between the sunflower resistant line DEB2, carrying OrDeb2, and a susceptible line was phenotyped for broomrape resistance in four experiments, including different environments and two broomrape races (FGV and GTK). This population was also densely genotyped with microsatellite and SNP markers, which allowed locating OrDeb2 within a 0.9 cM interval in the upper half of Chromosome 4. This interval corresponded to a 1.38 Mbp genomic region of the sunflower reference genome that contained a cluster of genes encoding LRR (leucine-rich repeat) receptor-like proteins lacking a cytoplasmic kinase domain and receptor-like kinases with one or two kinase domains and lacking an extracellular LRR region, which were valuable candidates for OrDeb2. Rhizotron and histological studies showed that OrDeb2 determines a post-attachment resistance response that blocks O. cumana development mainly at the cortex before the establishment of host-parasite vascular connections. This study will contribute to understand the interaction between crops and parasitic weeds, to establish durable breeding strategies based on genetic resistance and provide useful tools for marker-assisted selection and OrDeb2 map-based cloning.


Assuntos
Helianthus , Orobanche , Helianthus/genética , Orobanche/genética , Melhoramento Vegetal , Raízes de Plantas/fisiologia , Plantas Daninhas
3.
ScientificWorldJournal ; 2015: 146782, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26347898

RESUMO

The objective of this study was to evaluate the dynamics of tocopherols in cotyledons and radicles from sunflower seeds with high and low total tocopherol content, mainly in the α-tocopherol form, and from seeds with increased proportions of ß-, γ-, and δ-tocopherol, both under dark and light conditions. Tocopherol content was measured every 24 h from 1 to 12 days after sowing. In all cases, the content of individual tocopherol forms in the cotyledons and radicles was reduced along the sampling period, which was more pronounced under light conditions. The presence of light had a slightly greater effect on α- and γ-tocopherol than on ß- and δ-tocopherol. A marked light effect was also observed on total tocopherol content, with light promoting the reduction of tocopherol content in cotyledons and radicles. The study revealed only slight differences in the patterns of tocopherol losses in lines with different tocopherol profiles, both under dark and light conditions, which suggested that the partial replacement of α-tocopherol by other tocopherol forms had no great impact on the protection against oxidative damage in seedlings.


Assuntos
Helianthus/fisiologia , Fotoperíodo , Plântula/fisiologia , Tocoferóis/metabolismo , Genótipo
4.
Front Plant Sci ; 14: 1236511, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868306

RESUMO

Introduction: The sunflower broomrape (Orobanche cumana Wallr.) gene pools of the Guadalquivir Valley and Cuenca province in Spain had predominantly race-F virulence. A new race G was observed recently in the Guadalquivir Valley potentially due to the genetic recombination of the avirulence genes of both gene pools. Methods: In this research, we have studied populations with atypical virulence from Cuenca. These populations parasitize on DEB2 sunflower line, resistant to all race-G populations evaluated. Ten populations collected in Cuenca province were evaluated with sunflower differential lines and genotyped with 67 SNP markers. Results: Although genetic recombination with individuals of the Guadalquivir Valley gene pool has been observed in most populations, recombination of avirulence genes was discarded as the cause of the new virulence because the population with the highest degree of attack on DEB2 showed no introgression from an external gene pool. Accordingly, a point mutation is proposed as the putative cause of the new virulence. Discussion: The present study provided a detailed characterization of each population, including the accurate classification of the individuals belonging to each of the classical Spanish gene pools, F1 hybrids, and those that evolved from hybridization between both gene pools. This information is essential to understand how sunflower broomrape populations are evolving in Spain, which in turn may be helpful to understand the dynamics of sunflower broomrape populations in other areas of the world and use this information to develop durable strategies for resistance breeding.

5.
J Sci Food Agric ; 92(2): 351-7, 2012 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-21815166

RESUMO

BACKGROUND: Alpha-tocopherol is the predominant tocopherol form in sunflower seeds. Sunflower lines that accumulate increased levels of beta-, gamma- and delta-tocopherol in seeds as well as lines with reduced and increased total seed tocopherol content have been developed. The objective of this research was to evaluate whether the modified tocopherol levels are expressed in plant tissues other than seeds. RESULTS: Lines with increased levels of beta-, gamma- and delta-tocopherol in seeds also possessed increased levels of these tocopherols in leaves, roots and pollen. Correlation coefficients for the proportion of individual tocopherols in different plant tissues were significantly positive in all cases, ranging from 0.68 to 0.97. A line with reduced tocopherol content in seeds also showed reduced content in roots and pollen. CONCLUSION: Genetic modifications producing altered seed tocopherol profiles in sunflower are also expressed in leaves, roots and pollen. Reduced total seed tocopherol content is mainly expressed at the root and pollen level. The expression of tocopherol mutations in other plant tissues will enable further studies on the physiological role of tocopherols and could be of interest for early selection for these traits in breeding programmes.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/fisiologia , Helianthus/genética , Tocoferóis/metabolismo , Cruzamento , Helianthus/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Pólen/metabolismo , Sementes/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa