Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 24(8): 085706, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23386039

RESUMO

Structural, chemical and electronic properties of electroforming in the TiN/HfO(2) system are investigated at the nanometre scale. Reversible resistive switching is achieved by biasing the metal oxide using conductive atomic force microscopy. An original method is implemented to localize and investigate the conductive region by combining focused ion beam, scanning spreading resistance microscopy and scanning transmission electron microscopy. Results clearly show the presence of a conductive filament extending over 20 nm. Its size and shape is mainly tuned by the corresponding HfO(2) crystalline grain. Oxygen vacancies together with localized states in the HfO(2) band gap are highlighted by electron energy loss spectroscopy. Oxygen depletion is seen mainly in the central part of the conductive filament along grain boundaries. This is associated with partial amorphization, in particular at both electrode/oxide interfaces. Our results are a direct confirmation of the filamentary conduction mechanism, showing that oxygen content modulation at the nanometre scale plays a major role in resistive switching.

2.
Sci Rep ; 9(1): 15907, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31685888

RESUMO

The family of III-Nitride semiconductors has been under intensive research for almost 30 years and has revolutionized lighting applications at the dawn of the 21st century. However, besides the developments and applications achieved, nitride alloys continue to fuel the quest for novel materials and applications. We report on the synthesis of a new nitride-based compound by using annealing of AlN heteroepitaxial layers under a Si-atmosphere at temperatures between 1350 °C and 1550 °C. The structure and stoichiometry of this compound are investigated by high resolution transmission electron microscopy (TEM) techniques and energy dispersive X-Ray (EDX) spectroscopy. Results are supported by density functional theory (DFT) calculations. The identified structure is a derivative of the parent wurtzite AlN crystal where the anion sublattice is fully occupied by N atoms and the cation sublattice is the stacking of 2 different planes along <0001>: The first one exhibits a ×3 periodicity along <11-20> with 1/3 of the sites being vacant. The rest of the sites in the cation sublattice are occupied by an equal number of Si and Al atoms. Assuming a semiconducting alloy, a range of stoichiometries is proposed, Al5+αSi5+δN12 with α being between -2/3 and 1/4 and δ between 0 and 3/4.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa