Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Virol ; 93(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31554688

RESUMO

The MT-4 human T-cell line expresses HTLV-1 Tax and is permissive for replication of an HIV-1 gp41 mutant lacking the cytoplasmic tail. MT-4 cells (lot 150048), distributed by the NIH AIDS Reagent Program (NIH-ARP), were found to be Tax deficient and unable to host replication of the gp41-truncated HIV-1 mutant. These findings, together with short tandem repeat profiling, established that lot 150048 are not bona fide MT-4 cells.


Assuntos
Síndrome da Imunodeficiência Adquirida , Linhagem Celular/virologia , Linfócitos T/virologia , Produtos do Gene tax/genética , Proteína gp41 do Envelope de HIV/genética , HIV-1/genética , Vírus Linfotrópico T Tipo 1 Humano , Humanos , Repetições de Microssatélites , National Institutes of Health (U.S.) , Estados Unidos , Replicação Viral
2.
PLoS Pathog ; 13(8): e1006570, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28827840

RESUMO

The dynamics and regulation of HIV-1 nuclear import and its intranuclear movements after import have not been studied. To elucidate these essential HIV-1 post-entry events, we labeled viral complexes with two fluorescently tagged virion-incorporated proteins (APOBEC3F or integrase), and analyzed the HIV-1 dynamics of nuclear envelope (NE) docking, nuclear import, and intranuclear movements in living cells. We observed that HIV-1 complexes exhibit unusually long NE residence times (1.5±1.6 hrs) compared to most cellular cargos, which are imported into the nuclei within milliseconds. Furthermore, nuclear import requires HIV-1 capsid (CA) and nuclear pore protein Nup358, and results in significant loss of CA, indicating that one of the viral core uncoating steps occurs during nuclear import. Our results showed that the CA-Cyclophilin A interaction regulates the dynamics of nuclear import by delaying the time of NE docking as well as transport through the nuclear pore, but blocking reverse transcription has no effect on the kinetics of nuclear import. We also visualized the translocation of viral complexes docked at the NE into the nucleus and analyzed their nuclear movements and determined that viral complexes exhibited a brief fast phase (<9 min), followed by a long slow phase lasting several hours. A comparison of the movement of viral complexes to those of proviral transcription sites supports the hypothesis that HIV-1 complexes quickly tether to chromatin at or near their sites of integration in both wild-type cells and cells in which LEDGF/p75 was deleted using CRISPR/cas9, indicating that the tethering interactions do not require LEDGF/p75. These studies provide novel insights into the dynamics of viral complex-NE association, regulation of nuclear import, viral core uncoating, and intranuclear movements that precede integration site selection.


Assuntos
Núcleo Celular/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Integração Viral/fisiologia , Desenvelopamento do Vírus/fisiologia , Transporte Ativo do Núcleo Celular/fisiologia , Western Blotting , Linhagem Celular , Imunofluorescência , Técnicas de Silenciamento de Genes , Humanos , Microscopia Confocal , Membrana Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo
3.
PLoS Pathog ; 12(5): e1005646, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27186986

RESUMO

Although the predominant effect of host restriction APOBEC3 proteins on HIV-1 infection is to block viral replication, they might inadvertently increase retroviral genetic variation by inducing G-to-A hypermutation. Numerous studies have disagreed on the contribution of hypermutation to viral genetic diversity and evolution. Confounding factors contributing to the debate include the extent of lethal (stop codon) and sublethal hypermutation induced by different APOBEC3 proteins, the inability to distinguish between G-to-A mutations induced by APOBEC3 proteins and error-prone viral replication, the potential impact of hypermutation on the frequency of retroviral recombination, and the extent to which viral recombination occurs in vivo, which can reassort mutations in hypermutated genomes. Here, we determined the effects of hypermutation on the HIV-1 recombination rate and its contribution to genetic variation through recombination to generate progeny genomes containing portions of hypermutated genomes without lethal mutations. We found that hypermutation did not significantly affect the rate of recombination, and recombination between hypermutated and wild-type genomes only increased the viral mutation rate by 3.9 × 10-5 mutations/bp/replication cycle in heterozygous virions, which is similar to the HIV-1 mutation rate. Since copackaging of hypermutated and wild-type genomes occurs very rarely in vivo, recombination between hypermutated and wild-type genomes does not significantly contribute to the genetic variation of replicating HIV-1. We also analyzed previously reported hypermutated sequences from infected patients and determined that the frequency of sublethal mutagenesis for A3G and A3F is negligible (4 × 10-21 and1 × 10-11, respectively) and its contribution to viral mutations is far below mutations generated during error-prone reverse transcription. Taken together, we conclude that the contribution of APOBEC3-induced hypermutation to HIV-1 genetic variation is substantially lower than that from mutations during error-prone replication.


Assuntos
Citosina Desaminase/metabolismo , Variação Genética/genética , HIV-1/genética , Recombinação Genética/genética , Desaminases APOBEC , Citidina Desaminase , Células HEK293 , Humanos , Mutação , Taxa de Mutação , Reação em Cadeia da Polimerase
4.
Nucleic Acids Res ; 40(1): 345-59, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21908397

RESUMO

We report key mechanistic differences between the reverse transcriptases (RT) of human immunodeficiency virus type-1 (HIV-1) and of xenotropic murine leukemia virus-related virus (XMRV), a gammaretrovirus that can infect human cells. Steady and pre-steady state kinetics demonstrated that XMRV RT is significantly less efficient in DNA synthesis and in unblocking chain-terminated primers. Surface plasmon resonance experiments showed that the gammaretroviral enzyme has a remarkably higher dissociation rate (k(off)) from DNA, which also results in lower processivity than HIV-1 RT. Transient kinetics of mismatch incorporation revealed that XMRV RT has higher fidelity than HIV-1 RT. We identified RNA aptamers that potently inhibit XMRV, but not HIV-1 RT. XMRV RT is highly susceptible to some nucleoside RT inhibitors, including Translocation Deficient RT inhibitors, but not to non-nucleoside RT inhibitors. We demonstrated that XMRV RT mutants K103R and Q190M, which are equivalent to HIV-1 mutants that are resistant to tenofovir (K65R) and AZT (Q151M), are also resistant to the respective drugs, suggesting that XMRV can acquire resistance to these compounds through the decreased incorporation mechanism reported in HIV-1.


Assuntos
Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/metabolismo , DNA Polimerase Dirigida por RNA/química , DNA Polimerase Dirigida por RNA/metabolismo , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/enzimologia , Adenina/análogos & derivados , Adenina/farmacologia , Sequência de Aminoácidos , Aptâmeros de Nucleotídeos/farmacologia , DNA/biossíntese , DNA/metabolismo , Transcriptase Reversa do HIV/genética , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Vírus da Leucemia Murina de Moloney/enzimologia , Mutação , Nucleotídeos/metabolismo , Organofosfonatos/farmacologia , DNA Polimerase Dirigida por RNA/genética , Inibidores da Transcriptase Reversa/farmacologia , Homologia de Sequência de Aminoácidos , Tenofovir , Zidovudina/farmacologia , beta-Galactosidase/genética
5.
Nat Struct Mol Biol ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789685

RESUMO

HIV-1 Vif recruits host cullin-RING-E3 ubiquitin ligase and CBFß to degrade the cellular APOBEC3 antiviral proteins through diverse interactions. Recent evidence has shown that Vif also degrades the regulatory subunits PPP2R5(A-E) of cellular protein phosphatase 2A to induce G2/M cell cycle arrest. As PPP2R5 proteins bear no functional or structural resemblance to A3s, it is unclear how Vif can recognize different sets of proteins. Here we report the cryogenic-electron microscopy structure of PPP2R5A in complex with HIV-1 Vif-CBFß-elongin B-elongin C at 3.58 Å resolution. The structure shows PPP2R5A binds across the Vif molecule, with biochemical and cellular studies confirming a distinct Vif-PPP2R5A interface that partially overlaps with those for A3s. Vif also blocks a canonical PPP2R5A substrate-binding site, indicating that it suppresses the phosphatase activities through both degradation-dependent and degradation-independent mechanisms. Our work identifies critical Vif motifs regulating the recognition of diverse A3 and PPP2R5A substrates, whereby disruption of these host-virus protein interactions could serve as potential targets for HIV-1 therapeutics.

6.
J Virol ; 86(1): 328-38, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22031947

RESUMO

Xenotropic murine leukemia virus-related virus (XMRV) was previously reported to be associated with human prostate cancer and chronic fatigue syndrome. Our groups recently showed that XMRV was created through recombination between two endogenous murine retroviruses, PreXMRV-1 and PreXMRV-2, during the passaging of a prostate tumor xenograft in nude mice. Here, multiple approaches that led to the identification of PreXMRV-2, as well as the distribution of both parental proviruses among different mouse species, are described. The chromosomal loci of both proviruses were determined in the mouse genome, and integration site information was used to analyze the distribution of both proviruses in 48 laboratory mouse strains and 46 wild-derived strains. The strain distributions of PreXMRV-1 and PreXMRV-2 are quite different, the former being found predominantly in Asian mice and the latter in European mice, making it unlikely that the two XMRV ancestors could have recombined independently in the wild to generate an infectious virus. XMRV was not present in any of the mouse strains tested, and among the wild-derived mouse strains analyzed, not a single mouse carried both parental proviruses. Interestingly, PreXMRV-1 and PreXMRV-2 were found together in three laboratory strains, Hsd nude, NU/NU, and C57BR/cd, consistent with previous data that the recombination event that led to the generation of XMRV could have occurred only in the laboratory. The three laboratory strains carried the Xpr1(n) receptor variant nonpermissive to XMRV and xenotropic murine leukemia virus (X-MLV) infection, suggesting that the xenografted human tumor cells were required for the resulting XMRV recombinant to infect and propagate.


Assuntos
Camundongos/virologia , Provírus/genética , Infecções por Retroviridae/veterinária , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Mapeamento Cromossômico , Feminino , Humanos , Masculino , Camundongos/genética , Camundongos Endogâmicos , Dados de Sequência Molecular , Provírus/isolamento & purificação , Provírus/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores Virais/química , Receptores Virais/genética , Recombinação Genética , Infecções por Retroviridae/virologia , Alinhamento de Sequência , Integração Viral , Receptor do Retrovírus Politrópico e Xenotrópico , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/isolamento & purificação , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/fisiologia
7.
Mol Ther Nucleic Acids ; 33: 794-809, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37662965

RESUMO

Gene therapy strategies that effectively inhibit HIV-1 replication are needed to reduce the requirement for lifelong antiviral therapy and potentially achieve a functional cure. We previously designed self-activating lentiviral vectors that efficiently delivered and expressed a Vif-resistant mutant of APOBEC3G (A3G-D128K) to T cells, which potently inhibited HIV-1 replication and spread with no detectable virus. Here, we developed vectors that express A3G-D128K, membrane-associated fusion inhibitor peptide mC46, and O6-methylguanine-DNA-methyltransferase (MGMT) selectable marker for in vivo selection of transduced CD34+ hematopoietic stem and progenitor cells. MGMT-selected T cell lines MT4, CEM, and PM1 expressing A3G-D128K (with or without mC46) potently inhibited NL4-3 infection up to 45 days post infection with no detectable viral replication. Expression of mC46 was sufficient to block infection >80% in a single-cycle assay. Importantly, expression of mC46 provided a selective advantage to the A3G-D128K-modified T cells in the presence of replication competent virus. This combinational approach to first block HIV-1 entry with mC46, and then block any breakthrough infection with A3G-D128K, could provide an effective gene therapy treatment and a potential functional cure for HIV-1 infection.

8.
J Virol ; 85(10): 4888-97, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21325415

RESUMO

Xenotropic murine leukemia virus-related virus (XMRV) is a gammaretrovirus recently isolated from human prostate cancer and peripheral blood mononuclear cells (PBMCs) of patients with chronic fatigue syndrome (CFS). We and others have shown that host restriction factors APOBEC3G (A3G) and APOBEC3F (A3F), which are expressed in human PBMCs, inhibit XMRV in transient-transfection assays involving a single cycle of viral replication. However, the recovery of infectious XMRV from human PBMCs suggested that XMRV can replicate in these cells despite the expression of APOBEC3 proteins. To determine whether XMRV can replicate and spread in cultured PBMCs even though it can be inhibited by A3G/A3F, we infected phytohemagglutinin-activated human PBMCs and A3G/A3F-positive and -negative cell lines (CEM and CEM-SS, respectively) with different amounts of XMRV and monitored virus production by using quantitative real-time PCR. We found that XMRV efficiently replicated in CEM-SS cells and viral production increased by >4,000-fold, but there was only a modest increase in viral production from CEM cells (<14-fold) and a decrease in activated PBMCs, indicating little or no replication and spread of XMRV. However, infectious XMRV could be recovered from the infected PBMCs by cocultivation with a canine indicator cell line, and we observed hypermutation of XMRV genomes in PBMCs. Thus, PBMCs can potentially act as a source of infectious XMRV for spread to cells that express low levels of host restriction factors. Overall, these results suggest that hypermutation of XMRV in human PBMCs constitutes one of the blocks to replication and spread of XMRV. Furthermore, hypermutation of XMRV proviruses at GG dinucleotides may be a useful and reliable indicator of human PBMC infection.


Assuntos
Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Replicação Viral , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/imunologia , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/patogenicidade , Desaminase APOBEC-3G , Células Cultivadas , Citidina Desaminase/genética , Citidina Desaminase/imunologia , Citosina Desaminase/genética , Citosina Desaminase/imunologia , Humanos
9.
J Antimicrob Chemother ; 66(4): 702-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21393163

RESUMO

OBJECTIVES: HIV-1 reverse transcriptase (RT) mutations associated with antiviral drug resistance have been extensively characterized in the enzyme polymerase domain. Recent studies, however, have verified the involvement of the RT C-terminal domains (connection and RNase H) in drug resistance to RT inhibitors. In this work, we have characterized the correlation of recently described C-terminal domain mutations with thymidine analogue mutations (TAMs), as well as their phenotypic impact on susceptibility to zidovudine and nevirapine. METHODS: HIV-1 RT sequences from Brazilian patients and from public sequence databases for which the C-terminal RT domains and treatment status were also available were retrieved and analysed for the association of C-terminal mutations and the presence of TAMs and treatment status. Several C-terminal RT mutations previously characterized were introduced by site-directed mutagenesis into an HIV-1 subtype B molecular clone in a wild-type, TAM-1 or TAM-2 pathway context. Mutants were tested for drug susceptibility to the prototypic drugs zidovudine and nevirapine. RESULTS: Subtype B-infected patient database analysis showed that mutations N348I, A360V/T, T377M and D488E were found to be selected independently of TAMs, whereas mutations R358K, G359S, A371V, A400T, K451R and K512R increased in frequency with the number of TAMs in a dose-dependent fashion. Phenotypic analysis of C-terminal mutations showed that N348I, T369V and A371V conferred reduced susceptibility to zidovudine in the context of the TAM-1 and/or TAM-2 pathway, and also conferred dual resistance to nevirapine. Other mutations, such as D488E and Q547K, showed TAM-specific enhancement of resistance to zidovudine. Finally, mutation G359S displayed a zidovudine hypersusceptibility phenotype, both per se and when combined with A371V. CONCLUSIONS: This study demonstrates that distinct RT C-terminal mutations can act as primary or secondary drug resistance mutations, and are associated in a complex array of phenotypes with RT polymerase domain mutations.


Assuntos
Fármacos Anti-HIV/farmacologia , Farmacorresistência Viral , Transcriptase Reversa do HIV/genética , HIV-1/efeitos dos fármacos , Timidina/análogos & derivados , Substituição de Aminoácidos , Brasil , Infecções por HIV/virologia , HIV-1/enzimologia , HIV-1/isolamento & purificação , Humanos , Testes de Sensibilidade Microbiana , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Mutação de Sentido Incorreto , Nevirapina/farmacologia , Estrutura Terciária de Proteína/genética , Timidina/farmacologia , Zidovudina/farmacologia
10.
J Virol ; 84(10): 5238-49, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20219933

RESUMO

Recently, mutations in the connection subdomain (CN) and RNase H domain of HIV-1 reverse transcriptase (RT) were observed to exhibit dual resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors (NRTIs and NNRTIs). To elucidate the mechanism by which CN and RH mutations confer resistance to NNRTIs, we hypothesized that these mutations reduce RNase H cleavage and provide more time for the NNRTI to dissociate from the RT, resulting in the resumption of DNA synthesis and enhanced NNRTI resistance. We observed that the effect of the reduction in RNase H cleavage on NNRTI resistance is dependent upon the affinity of each NNRTI to the RT and further influenced by the presence of NNRTI-binding pocket (BP) mutants. D549N, Q475A, and Y501A mutants, which reduce RNase H cleavage, enhance resistance to nevirapine (NVP) and delavirdine (DLV), but not to efavirenz (EFV) and etravirine (ETR), consistent with their increase in affinity for RT. Combining the D549N mutant with NNRTI BP mutants further increases NNRTI resistance from 3- to 30-fold, supporting the role of NNRTI-RT affinity in our NNRTI resistance model. We also demonstrated that CNs from treatment-experienced patients, previously reported to enhance NRTI resistance, also reduce RNase H cleavage and enhance NNRTI resistance in the context of the patient RT pol domain or a wild-type pol domain. Together, these results confirm key predictions of our NNRTI resistance model and provide support for a unifying mechanism by which CN and RH mutations can exhibit dual NRTI and NNRTI resistance.


Assuntos
Fármacos Anti-HIV/farmacologia , Farmacorresistência Viral , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Mutação de Sentido Incorreto , Inibidores da Transcriptase Reversa/farmacologia , Transcriptase Reversa do HIV/genética , Humanos , Ribonuclease H/metabolismo
11.
J Virol ; 84(11): 5719-29, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20335265

RESUMO

Xenotropic murine leukemia virus-related virus (XMRV), a gammaretrovirus, has been isolated from human prostate cancer tissue and from activated CD4(+) T cells and B cells of patients with chronic fatigue syndrome, suggesting an association between XMRV infection and these two diseases. Since APOBEC3G (A3G) and APOBEC3F (A3F), which are potent inhibitors of murine leukemia virus and Vif-deficient human immunodeficiency virus type 1 (HIV-1), are expressed in human CD4(+) T cells and B cells, we sought to determine how XMRV evades suppression of replication by APOBEC3 proteins. We found that expression of A3G, A3F, or murine A3 in virus-producing cells resulted in their virion incorporation, inhibition of XMRV replication, and G-to-A hypermutation of the viral DNA with all three APOBEC3 proteins. Quantitation of A3G and A3F mRNAs indicated that, compared to the human T-cell lines CEM and H9, prostate cell lines LNCaP and DU145 exhibited 50% lower A3F mRNA levels, whereas A3G expression in 22Rv1, LNCaP, and DU145 cells was nearly undetectable. XMRV proviral genomes in LNCaP and DU145 cells were hypermutated at low frequency with mutation patterns consistent with A3F activity. XMRV proviral genomes were extensively hypermutated upon replication in A3G/A3F-positive T cells (CEM and H9), but not in A3G/A3F-negative cells (CEM-SS). We also observed that XMRV replication was susceptible to the nucleoside reverse transcriptase (RT) inhibitors zidovudine (AZT) and tenofovir and the integrase inhibitor raltegravir. In summary, the establishment of XMRV infection in patients may be dependent on infection of A3G/A3F-deficient cells, and cells expressing low levels of A3G/A3F, such as prostate cancer cells, may be ideal producers of infectious XMRV. Furthermore, the anti-HIV-1 drugs AZT, tenofovir, and raltegravir may be useful for treatment of XMRV infection.


Assuntos
Antivirais/farmacologia , Citidina Desaminase/imunologia , Gammaretrovirus/imunologia , Vírus da Leucemia Murina/imunologia , Neoplasias da Próstata/virologia , Infecções por Retroviridae/imunologia , Infecções Tumorais por Vírus/imunologia , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Linhagem Celular Tumoral , Citidina Desaminase/genética , Humanos , Masculino , Camundongos , Mutação , Organofosfonatos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Pirrolidinonas/farmacologia , Raltegravir Potássico , Infecções por Retroviridae/tratamento farmacológico , Tenofovir , Infecções Tumorais por Vírus/tratamento farmacológico , Zidovudina/farmacologia
12.
J Virol ; 84(19): 10241-53, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20668078

RESUMO

Recent studies have shown that APOBEC3G (A3G), a potent inhibitor of human immunodeficiency virus type 1 (HIV-1) replication, is localized to cytoplasmic mRNA-processing bodies (P bodies). However, the functional relevance of A3G colocalization with P body marker proteins has not been established. To explore the relationship between HIV-1, A3G, and P bodies, we analyzed the effects of overexpression of P body marker proteins Mov10, DCP1a, and DCP2 on HIV-1 replication. Our results show that overexpression of Mov10, a putative RNA helicase that was previously reported to belong to the DExD superfamily and was recently reported to belong to the Upf1-like group of helicases, but not the decapping enzymes DCP1a and DCP2, leads to potent inhibition of HIV-1 replication at multiple stages. Mov10 overexpression in the virus producer cells resulted in reductions in the steady-state levels of the HIV-1 Gag protein and virus production; Mov10 was efficiently incorporated into virions and reduced virus infectivity, in part by inhibiting reverse transcription. In addition, A3G and Mov10 overexpression reduced proteolytic processing of HIV-1 Gag. The inhibitory effects of A3G and Mov10 were additive, implying a lack of functional interaction between the two inhibitors. Small interfering RNA (siRNA)-mediated knockdown of endogenous Mov10 by 80% resulted in a 2-fold reduction in virus production but no discernible impact on the infectivity of the viruses after normalization for the p24 input, suggesting that endogenous Mov10 was not required for viral infectivity. Overall, these results show that Mov10 can potently inhibit HIV-1 replication at multiple stages.


Assuntos
HIV-1/fisiologia , RNA Helicases/fisiologia , Replicação Viral/fisiologia , Desaminase APOBEC-3G , Linhagem Celular , Citidina Desaminase/fisiologia , Estruturas Citoplasmáticas/fisiologia , Estruturas Citoplasmáticas/virologia , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/genética , HIV-1/genética , HIV-1/patogenicidade , Células HeLa , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Processamento de Proteína Pós-Traducional , RNA Helicases/antagonistas & inibidores , RNA Helicases/genética , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Viral/genética , RNA Viral/metabolismo , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/fisiologia
13.
Proc Natl Acad Sci U S A ; 105(31): 10943-8, 2008 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-18667707

RESUMO

We previously proposed that mutations in the connection subdomain (cn) of HIV-1 reverse transcriptase increase AZT resistance by altering the balance between nucleotide excision and template RNA degradation. To test the predictions of this model, we analyzed the effects of previously identified cn mutations in combination with thymidine analog mutations (D67N, K70R, T215Y, and K219Q) on in vitro RNase H activity and AZT monophosphate (AZTMP) excision. We found that cn mutations G335C/D, N348I, A360I/V, V365I, and A376S decreased primary and secondary RNase H cleavages. The patient-derived cns increased ATP- and PPi-mediated AZTMP excision on an RNA template compared with a DNA template. One of 5 cns caused an increase in ATP-mediated AZTMP excision on a DNA template, whereas three cns showed a higher ratio of ATP- to PPi-mediated excision, indicating that some cn mutations also affect excision on a DNA substrate. Overall, the results strongly support the model that cn mutations increase AZT resistance by reducing template RNA degradation, thereby providing additional time for RT to excise AZTMP.


Assuntos
Farmacorresistência Viral/genética , Transcriptase Reversa do HIV/genética , Modelos Biológicos , Mutação/genética , RNA/metabolismo , Zidovudina/metabolismo , Linhagem Celular , Clonagem Molecular , Primers do DNA/genética , Humanos , Mutagênese
14.
Commun Biol ; 4(1): 386, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753867

RESUMO

APOBEC3A (A3A) and APOBEC3B (A3B) enzymes drive APOBEC-mediated mutagenesis. Identification of factors affecting the activity of these enzymes could help modulate mutagenesis and associated clinical outcomes. Here, we show that canonical and alternatively spliced A3A and A3B isoforms produce corresponding mutagenic and non-mutagenic enzymes. Increased expression of the mutagenic A3B isoform predicted shorter progression-free survival in bladder cancer. We demonstrate that the production of mutagenic vs. non-mutagenic A3B protein isoforms was considerably affected by inclusion/skipping of exon 5 in A3B. Furthermore, exon 5 skipping, resulting in lower levels of mutagenic A3B enzyme, could be increased in vitro. Specifically, we showed the effects of treatment with an SF3B1 inhibitor affecting spliceosome interaction with a branch point site in intron 4, or with splice-switching oligonucleotides targeting exon 5 of A3B. Our results underscore the clinical role of A3B and implicate alternative splicing of A3B as a mechanism that could be targeted to restrict APOBEC-mediated mutagenesis.


Assuntos
Processamento Alternativo , Biomarcadores Tumorais/genética , Citidina Desaminase/genética , Antígenos de Histocompatibilidade Menor/genética , Mutagênese , Proteínas/genética , Neoplasias da Bexiga Urinária/genética , Biomarcadores Tumorais/metabolismo , Citidina Desaminase/metabolismo , Compostos de Epóxi/farmacologia , Éxons , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Isoenzimas , Macrolídeos/farmacologia , Antígenos de Histocompatibilidade Menor/metabolismo , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/metabolismo , Intervalo Livre de Progressão , Proteínas/metabolismo , Fatores de Processamento de RNA/antagonistas & inibidores , Fatores de Processamento de RNA/metabolismo , Neoplasias da Bexiga Urinária/enzimologia , Neoplasias da Bexiga Urinária/mortalidade , Neoplasias da Bexiga Urinária/terapia
15.
J Virol ; 83(17): 8502-13, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19553318

RESUMO

We previously shown that mutations in the connection (CN) subdomain of human immunodeficiency virus type 1 (HIV-1) subtype B reverse transcriptase (RT) increase 3'-azido-3'-deoxythymidine (AZT) resistance in the context of thymidine analog mutations (TAMs) by affecting the balance between polymerization and RNase H activity. To determine whether this balance affects drug resistance in other HIV-1 subtypes, recombinant subtype CRF01_AE was analyzed. Interestingly, CRF01_AE containing TAMs exhibited 64-fold higher AZT resistance relative to wild-type B, whereas AZT resistance of subtype B containing the same TAMs was 13-fold higher, which in turn correlated with higher levels of AZT-monophosphate (AZTMP) excision on both RNA and DNA templates. The high level of AZT resistance exhibited by CRF01_AE was primarily associated with the T400 residue in wild-type subtype AE CN subdomain. An A400T substitution in subtype B enhanced AZT resistance, increased AZTMP excision on both RNA and DNA templates, and reduced RNase H cleavage. Replacing the T400 residue in CRF01_AE with alanine restored AZT sensitivity and reduced AZTMP excision on both RNA and DNA templates, suggesting that the T400 residue increases AZT resistance in CRF01_AE at least in part by directly increasing the efficiency of AZTMP excision. These results show for the first time that CRF01_AE exhibits higher levels of AZT resistance in the presence of TAMs and that this resistance is primarily associated with T400. Our results also show that mixing the RT polymerase, CN, and RNase H domains from different subtypes can underestimate AZT resistance levels, and they emphasize the need to develop subtype-specific genotypic and phenotypic assays to provide more accurate estimates of clinical drug resistance.


Assuntos
Fármacos Anti-HIV/farmacologia , Farmacorresistência Viral , Transcriptase Reversa do HIV/efeitos dos fármacos , HIV-1/efeitos dos fármacos , Zidovudina/farmacologia , Linhagem Celular , Reparo do DNA , Genótipo , Transcriptase Reversa do HIV/genética , HIV-1/classificação , HIV-1/genética , Humanos , Testes de Sensibilidade Microbiana , Mutação Puntual , RNA Viral/metabolismo , Ribonuclease H/metabolismo , Timidina/genética , Proteínas Virais/metabolismo
16.
Viruses ; 12(6)2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471198

RESUMO

Mammals have developed clever adaptive and innate immune defense mechanisms to protect against invading bacterial and viral pathogens. Human innate immunity is continuously evolving to expand the repertoire of restriction factors and one such family of intrinsic restriction factors is the APOBEC3 (A3) family of cytidine deaminases. The coordinated expression of seven members of the A3 family of cytidine deaminases provides intrinsic immunity against numerous foreign infectious agents and protects the host from exogenous retroviruses and endogenous retroelements. Four members of the A3 proteins-A3G, A3F, A3H, and A3D-restrict HIV-1 in the absence of virion infectivity factor (Vif); their incorporation into progeny virions is a prerequisite for cytidine deaminase-dependent and -independent activities that inhibit viral replication in the host target cell. HIV-1 encodes Vif, an accessory protein that antagonizes A3 proteins by targeting them for polyubiquitination and subsequent proteasomal degradation in the virus producing cells. In this review, we summarize our current understanding of the role of human A3 proteins as barriers against HIV-1 infection, how Vif overcomes their antiviral activity, and highlight recent structural and functional insights into A3-mediated restriction of lentiviruses.


Assuntos
Desaminases APOBEC/fisiologia , Infecções por Lentivirus/imunologia , Lentivirus/imunologia , Desaminases APOBEC/química , Animais , Sequência de Bases , Humanos , Lentivirus/metabolismo , Infecções por Lentivirus/metabolismo , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
17.
J Mol Biol ; 432(23): 6042-6060, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33098858

RESUMO

APOBEC3G (A3G) is a single-stranded DNA (ssDNA) cytosine deaminase that can restrict HIV-1 infection by mutating the viral genome. A3G consists of a non-catalytic N-terminal domain (NTD) and a catalytic C-terminal domain (CTD) connected by a short linker. While the CTD catalyzes cytosine deamination, the NTD is believed to provide additional affinity for ssDNA. Structures of both A3G domains have been solved individually; however, a full-length A3G structure has been challenging. Recently, crystal structures of full-length rhesus macaque A3G variants were solved which suggested dimerization mechanisms and RNA binding surfaces, whereas the dimerization appeared to compromise catalytic activity. We determined the crystal structure of a soluble variant of human A3G (sA3G) at 2.5 Å and from these data generated a model structure of wild-type A3G. This model demonstrated that the NTD was rotated 90° relative to the CTD along the major axis of the molecule, an orientation that forms a positively charged channel connected to the CTD catalytic site, consisting of NTD loop-1 and CTD loop-3. Structure-based mutations, in vitro deamination and DNA binding assays, and HIV-1 restriction assays identify R24, located in the NTD loop-1, as essential to a critical interaction with ssDNA. Furthermore, sA3G was shown to bind a deoxy-cytidine dinucleotide near the catalytic Zn2+, yet not in the catalytic position, where the interactions between deoxy-cytidines and CTD loop-1 and loop-7 residues were different from those formed with substrate. These new interactions suggest a mechanism explaining why A3G exhibits a 3' to 5' directional preference in processive deamination.


Assuntos
Desaminase APOBEC-3G/ultraestrutura , DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/ultraestrutura , Conformação Proteica , Desaminase APOBEC-3G/química , Desaminase APOBEC-3G/genética , Animais , Domínio Catalítico/genética , Cristalografia por Raios X , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Humanos , Macaca mulatta/genética , Mutação/genética , Ligação Proteica/genética , Domínios Proteicos/genética , Zinco/química
18.
Methods Mol Biol ; 485: 55-72, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19020818

RESUMO

The reverse transcriptase enzyme plays an essential role in the HIV-1 life cycle by converting a single-stranded viral RNA genome into a double-stranded viral DNA through a complex process known as reverse transcription. The resulting double-stranded DNA is integrated into the host chromosome to form a provirus. A small proportion of the viral DNAs form dead-end circular products, which nevertheless can serve as useful surrogate markers for monitoring viral replication. Utilizing real-time PCR technology, it is possible to track and quantify different stages of the reverse transcription process, the proviruses, and the nonintegrated dead-end reverse transcription products.


Assuntos
HIV-1/fisiologia , Reação em Cadeia da Polimerase/métodos , Replicação Viral , Linhagem Celular , HIV-1/genética , Humanos , RNA Viral/genética
19.
Mol Ther Nucleic Acids ; 18: 1023-1038, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31778955

RESUMO

Strategies to control HIV-1 replication without antiviral therapy are needed to achieve a functional cure. To exploit the innate antiviral function of restriction factor cytidine deaminase APOBEC3G (A3G), we developed self-activating lentiviral vectors that efficiently deliver HIV-1 Vif-resistant mutant A3G-D128K to target cells. To circumvent APOBEC3 expression in virus-producing cells, which diminishes virus infectivity, a vector containing two overlapping fragments of A3G-D128K was designed that maintained the gene in an inactive form in the virus-producer cells. However, during transduction of target cells, retroviral recombination between the direct repeats reconstituted an active A3G-D128K in 89%-98% of transduced cells. Lentiviral vectors that expressed A3G-D128K transduced CD34+ hematopoietic stem and progenitor cells with a high efficiency (>30%). A3G-D128K expression in T cell lines CEM, CEMSS, and PM1 potently inhibited spreading infection of several HIV-1 subtypes by C-to-U deamination leading to lethal G-to-A hypermutation and inhibition of reverse transcription. SIVmac239 and HIV-2 were not inhibited, since their Vifs degraded A3G-D128K. A3G-D128K expression in CEM cells potently suppressed HIV-1 replication for >3.5 months without detectable resistant virus, suggesting a high genetic barrier for the emergence of A3G-D128K resistance. Because of this, A3G-D128K expression in HIV-1 target cells is a potential anti-HIV gene therapy approach that could be combined with other therapies for the treatment and functional cure of HIV-1 infection.

20.
Virology ; 435(2): 433-41, 2013 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-23068886

RESUMO

Mutations in the connection subdomain (CN) and RNase H domain (RH) of HIV-1 reverse transcriptase (RT) from subtype B-infected patients enhance nucleoside and nonnucleoside RT inhibitor (NRTI and NNRTI) resistance by affecting the balance between polymerization and RNase H activity. To determine whether CN mutations in subtype C influence drug sensitivity, single genome sequencing was performed on Brazilian subtype C-infected patients failing RTI therapy. CN mutations identified were similar to subtype B, including A376S, A400T, Q334D, G335D, N348I, and A371V, and increased AZT resistance in the presence of thymidine analog mutations. CN mutations also enhanced NNRTI resistance in the presence of classical NNRTI mutations: etravirine resistance was enhanced 6- to 11-fold in the presence of L100I/K103N/Y181C. These results indicate that selection of CN mutations in treatment-experienced patients also occurs in subtype-C-infected patients and are likely to provide valuable information in predicting clinical RTI resistance.


Assuntos
Fármacos Anti-HIV/farmacologia , Farmacorresistência Viral/genética , Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/genética , HIV-1/efeitos dos fármacos , Mutação , Inibidores da Transcriptase Reversa/farmacologia , Sequência de Aminoácidos , Brasil , Linhagem Celular , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/genética , Humanos , Dados de Sequência Molecular , Nitrilas , Estrutura Terciária de Proteína/genética , Piridazinas/farmacologia , Pirimidinas , Zidovudina/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa