Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 181(6): 1246-1262.e22, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32442405

RESUMO

There is considerable inter-individual variability in susceptibility to weight gain despite an equally obesogenic environment in large parts of the world. Whereas many studies have focused on identifying the genetic susceptibility to obesity, we performed a GWAS on metabolically healthy thin individuals (lowest 6th percentile of the population-wide BMI spectrum) in a uniquely phenotyped Estonian cohort. We discovered anaplastic lymphoma kinase (ALK) as a candidate thinness gene. In Drosophila, RNAi mediated knockdown of Alk led to decreased triglyceride levels. In mice, genetic deletion of Alk resulted in thin animals with marked resistance to diet- and leptin-mutation-induced obesity. Mechanistically, we found that ALK expression in hypothalamic neurons controls energy expenditure via sympathetic control of adipose tissue lipolysis. Our genetic and mechanistic experiments identify ALK as a thinness gene, which is involved in the resistance to weight gain.


Assuntos
Quinase do Linfoma Anaplásico/genética , Magreza/genética , Tecido Adiposo/metabolismo , Adulto , Animais , Linhagem Celular , Estudos de Coortes , Drosophila/genética , Estônia , Feminino , Humanos , Leptina/genética , Lipólise/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Interferência de RNA/fisiologia , Adulto Jovem
2.
Genes Dev ; 31(1): 34-45, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28130345

RESUMO

Centrosomes, the main microtubule-organizing centers in animal cells, are replicated exactly once during the cell division cycle to form the poles of the mitotic spindle. Supernumerary centrosomes can lead to aberrant cell division and have been causally linked to chromosomal instability and cancer. Here, we report that an increase in the number of mature centrosomes, generated by disrupting cytokinesis or forcing centrosome overduplication, triggers the activation of the PIDDosome multiprotein complex, leading to Caspase-2-mediated MDM2 cleavage, p53 stabilization, and p21-dependent cell cycle arrest. This pathway also restrains the extent of developmentally scheduled polyploidization by regulating p53 levels in hepatocytes during liver organogenesis. Taken together, the PIDDosome acts as a first barrier, engaging p53 to halt the proliferation of cells carrying more than one mature centrosome to maintain genome integrity.


Assuntos
Centrossomo/fisiologia , Genes p53/genética , Complexos Multiproteicos/metabolismo , Ativação Transcricional/genética , Células A549 , Animais , Proteína Adaptadora de Sinalização CRADD/metabolismo , Caspase 2/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Células Cultivadas , Centrossomo/patologia , Citocinese/genética , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Humanos , Fígado/citologia , Fígado/embriologia , Camundongos , Organogênese/genética
3.
Circulation ; 147(20): 1518-1533, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37013819

RESUMO

BACKGROUND: Calcific aortic valve disease (CAVD) is characterized by a phenotypic switch of valvular interstitial cells to bone-forming cells. Toll-like receptors (TLRs) are evolutionarily conserved pattern recognition receptors at the interface between innate immunity and tissue repair. Type I interferons (IFNs) are not only crucial for an adequate antiviral response but also implicated in bone formation. We hypothesized that the accumulation of endogenous TLR3 ligands in the valvular leaflets may promote the generation of osteoblast-like cells through enhanced type I IFN signaling. METHODS: Human valvular interstitial cells isolated from aortic valves were challenged with mechanical strain or synthetic TLR3 agonists and analyzed for bone formation, gene expression profiles, and IFN signaling pathways. Different inhibitors were used to delineate the engaged signaling pathways. Moreover, we screened a variety of potential lipids and proteoglycans known to accumulate in CAVD lesions as potential TLR3 ligands. Ligand-receptor interactions were characterized by in silico modeling and verified through immunoprecipitation experiments. Biglycan (Bgn), Tlr3, and IFN-α/ß receptor alpha chain (Ifnar1)-deficient mice and a specific zebrafish model were used to study the implication of the biglycan (BGN)-TLR3-IFN axis in both CAVD and bone formation in vivo. Two large-scale cohorts (GERA [Genetic Epidemiology Research on Adult Health and Aging], n=55 192 with 3469 aortic stenosis cases; UK Biobank, n=257 231 with 2213 aortic stenosis cases) were examined for genetic variation at genes implicated in BGN-TLR3-IFN signaling associating with CAVD in humans. RESULTS: Here, we identify TLR3 as a central molecular regulator of calcification in valvular interstitial cells and unravel BGN as a new endogenous agonist of TLR3. Posttranslational BGN maturation by xylosyltransferase 1 (XYLT1) is required for TLR3 activation. Moreover, BGN induces the transdifferentiation of valvular interstitial cells into bone-forming osteoblasts through the TLR3-dependent induction of type I IFNs. It is intriguing that Bgn-/-, Tlr3-/-, and Ifnar1-/- mice are protected against CAVD and display impaired bone formation. Meta-analysis of 2 large-scale cohorts with >300 000 individuals reveals that genetic variation at loci relevant to the XYLT1-BGN-TLR3-interferon-α/ß receptor alpha chain (IFNAR) 1 pathway is associated with CAVD in humans. CONCLUSIONS: This study identifies the BGN-TLR3-IFNAR1 axis as an evolutionarily conserved pathway governing calcification of the aortic valve and reveals a potential therapeutic target to prevent CAVD.


Assuntos
Estenose da Valva Aórtica , Calcinose , Adulto , Animais , Humanos , Camundongos , Valva Aórtica/patologia , Estenose da Valva Aórtica/patologia , Biglicano/metabolismo , Calcinose/metabolismo , Células Cultivadas , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Peixe-Zebra
4.
Haematologica ; 108(1): 135-149, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35796011

RESUMO

Anemia is a major health issue and associated with increased morbidity. Iron deficiency anemia (IDA) is the most prevalent, followed by anemia of chronic disease (ACD). IDA and ACD often co-exist, challenging diagnosis and treatment. While iron supplementation is the first-line therapy for IDA, its optimal route of administration and the efficacy of different repletion strategies in ACD are elusive. Female Lewis rats were injected with group A streptococcal peptidoglycan-polysaccharide (PG-APS) to induce inflammatory arthritis with associated ACD and/or repeatedly phlebotomized and fed with a low iron diet to induce IDA, or a combination thereof (ACD/IDA). Iron was either supplemented by daily oral gavage of ferric maltol or by weekly intravenous (i.v.) injection of ferric carboxymaltose for up to 4 weeks. While both strategies reversed IDA, they remained ineffective to improve hemoglobin (Hb) levels in ACD, although oral iron showed slight amelioration of various erythropoiesis-associated parameters. In contrast, both iron treatments significantly increased Hb in ACD/IDA. In ACD and ACD/IDA animals, i.v. iron administration resulted in iron trapping in liver and splenic macrophages, induction of ferritin expression and increased circulating levels of the iron hormone hepcidin and the inflammatory cytokine interleukin-6, while oral iron supplementation reduced interleukin-6 levels. Thus, oral and i.v. iron resulted in divergent effects on systemic and tissue iron homeostasis and inflammation. Our results indicate that both iron supplements improve Hb in ACD/IDA, but are ineffective in ACD with pronounced inflammation, and that under the latter condition, i.v. iron is trapped in macrophages and may enhance inflammation.


Assuntos
Anemia Ferropriva , Anemia , Feminino , Animais , Ratos , Interleucina-6 , Ratos Endogâmicos Lew , Anemia/diagnóstico , Ferro/metabolismo , Anemia Ferropriva/tratamento farmacológico , Anemia Ferropriva/etiologia , Anemia Ferropriva/diagnóstico , Inflamação/tratamento farmacológico
5.
Blood ; 136(9): 1080-1090, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32438400

RESUMO

Recombinant erythropoietin (EPO) and iron substitution are a standard of care for treatment of anemias associated with chronic inflammation, including anemia of chronic kidney disease. A black box warning for EPO therapy and concerns about negative side effects related to high-dose iron supplementation as well as the significant proportion of patients becoming EPO resistant over time explains the medical need to define novel strategies to ameliorate anemia of chronic disease (ACD). As hepcidin is central to the iron-restrictive phenotype in ACD, therapeutic approaches targeting hepcidin were recently developed. We herein report the therapeutic effects of a fully human anti-BMP6 antibody (KY1070) either as monotherapy or in combination with Darbepoetin alfa on iron metabolism and anemia resolution in 2 different, well-established, and clinically relevant rodent models of ACD. In addition to counteracting hepcidin-driven iron limitation for erythropoiesis, we found that the combination of KY1070 and recombinant human EPO improved the erythroid response compared with either monotherapy in a qualitative and quantitative manner. Consequently, the combination of KY1070 and Darbepoetin alfa resulted in an EPO-sparing effect. Moreover, we found that suppression of hepcidin via KY1070 modulates ferroportin expression on erythroid precursor cells, thereby lowering potentially toxic-free intracellular iron levels and by accelerating erythroid output as reflected by increased maturation of erythrocyte progenitors. In summary, we conclude that treatment of ACD, as a highly complex disease, becomes more effective by a multifactorial therapeutic approach upon mobilization of endogenous iron deposits and stimulation of erythropoiesis.


Assuntos
Anemia/terapia , Anticorpos Monoclonais/uso terapêutico , Proteína Morfogenética Óssea 6/antagonistas & inibidores , Darbepoetina alfa/uso terapêutico , Anemia/tratamento farmacológico , Anemia/etiologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Artrite/induzido quimicamente , Artrite/complicações , Medula Óssea/metabolismo , Proteína Morfogenética Óssea 6/imunologia , Proteínas de Transporte de Cátions/metabolismo , Citocinas/sangue , Darbepoetina alfa/administração & dosagem , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Eritropoetina/farmacologia , Eritropoetina/uso terapêutico , Células Hep G2 , Humanos , Ferro/metabolismo , Camundongos , Proteínas Musculares/sangue , Polissacarídeos Bacterianos/toxicidade , Distribuição Aleatória , Proteínas Recombinantes/imunologia , Insuficiência Renal Crônica/complicações
6.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35743233

RESUMO

Macrophages are at the center of innate pathogen control and iron recycling. Divalent metal transporter 1 (DMT1) is essential for the uptake of non-transferrin-bound iron (NTBI) into macrophages and for the transfer of transferrin-bound iron from the endosome to the cytoplasm. As the control of cellular iron trafficking is central for the control of infection with siderophilic pathogens such as Salmonella Typhimurium, a Gram-negative bacterium residing within the phagosome of macrophages, we examined the potential role of DMT1 for infection control. Bone marrow derived macrophages lacking DMT1 (DMT1fl/flLysMCre(+)) present with reduced NTBI uptake and reduced levels of the iron storage protein ferritin, the iron exporter ferroportin and, surprisingly, of the iron uptake protein transferrin receptor. Further, DMT1-deficient macrophages have an impaired control of Salmonella Typhimurium infection, paralleled by reduced levels of the peptide lipocalin-2 (LCN2). LCN2 exerts anti-bacterial activity upon binding of microbial siderophores but also facilitates systemic and cellular hypoferremia. Remarkably, nifedipine, a pharmacological DMT1 activator, stimulates LCN2 expression in RAW264.7 macrophages, confirming its DMT1-dependent regulation. In addition, the absence of DMT1 increases the availability of iron for Salmonella upon infection and leads to increased bacterial proliferation and persistence within macrophages. Accordingly, mice harboring a macrophage-selective DMT1 disruption demonstrate reduced survival following Salmonella infection. This study highlights the importance of DMT1 in nutritional immunity and the significance of iron delivery for the control of infection with siderophilic bacteria.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Ferro , Infecções por Salmonella , Animais , Ferro/metabolismo , Lipocalina-2/genética , Lipocalina-2/metabolismo , Macrófagos/metabolismo , Camundongos , Infecções por Salmonella/metabolismo , Salmonella typhimurium/metabolismo , Transferrina/metabolismo
7.
J Lipid Res ; 62: 100125, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34571016

RESUMO

HDL-mediated cholesterol efflux capacity (CEC) may protect against cardiovascular disease. However, CEC assays are not standardized, hampering their application in large cohorts and comparison between studies. To improve standardization, we systematically investigated technical differences between existing protocols that influence assay performance that have not been previously addressed. CEC was measured in 96-well plates using J774A.1 macrophages labeled with BODIPY-cholesterol and incubated for 4 h with 2% apolipoprotein B-depleted human serum. The time zero method, which calculates CEC using control wells, and the per-well method, which calculates CEC based on the actual content of BODIPY-cholesterol in each well, were compared in 506 samples. We showed that the per-well method had a considerably lower sample rejection rate (4.74% vs. 13.44%) and intra-assay (4.48% vs. 5.28%) and interassay coefficients of variation (two controls: 7.85%, 9.86% vs. 13.58%, 15.29%) compared with the time zero method. Correction for plate-to-plate differences using four controls on each plate also improved assay performance of both methods. In addition, we observed that the lysis reagent used had a significant effect. Compared with cholic acid, lysis with sodium hydroxide results in higher (P = 0.0082) and Triton X-100 in lower (P = 0.0028) CEC values. Furthermore, large cell seeding errors (30% variation) greatly biased CEC for both referencing methods (P < 0.0001) as measured by a resazurin assay. In conclusion, lysis reagents, cell numbers, and assay setup greatly impact the quality and reliability of CEC quantification and should be considered when this method is newly established in a laboratory.


Assuntos
HDL-Colesterol/sangue , Colesterol/sangue , Ensaios de Triagem em Larga Escala , Animais , Contagem de Células , Linhagem Celular , Feminino , Voluntários Saudáveis , Humanos , Masculino , Camundongos
8.
Eur Heart J ; 41(40): 3949-3959, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32227235

RESUMO

AIMS: Imbalances of iron metabolism have been linked to the development of atherosclerosis. However, subjects with hereditary haemochromatosis have a lower prevalence of cardiovascular disease. The aim of our study was to understand the underlying mechanisms by combining data from genome-wide association study analyses in humans, CRISPR/Cas9 genome editing, and loss-of-function studies in mice. METHODS AND RESULTS: Our analysis of the Global Lipids Genetics Consortium (GLGC) dataset revealed that single nucleotide polymorphisms (SNPs) in the haemochromatosis gene HFE associate with reduced low-density lipoprotein cholesterol (LDL-C) in human plasma. The LDL-C lowering effect could be phenocopied in dyslipidaemic ApoE-/- mice lacking Hfe, which translated into reduced atherosclerosis burden. Mechanistically, we identified HFE as a negative regulator of LDL receptor expression in hepatocytes. Moreover, we uncovered liver-resident Kupffer cells (KCs) as central players in cholesterol homeostasis as they were found to acquire and transfer LDL-derived cholesterol to hepatocytes in an Abca1-dependent fashion, which is controlled by iron availability. CONCLUSION: Our results disentangle novel regulatory interactions between iron metabolism, KC biology and cholesterol homeostasis which are promising targets for treating dyslipidaemia but also provide a mechanistic explanation for reduced cardiovascular morbidity in subjects with haemochromatosis.


Assuntos
Aterosclerose , Proteína da Hemocromatose , Hemocromatose , Animais , Aterosclerose/genética , LDL-Colesterol , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Estudo de Associação Genômica Ampla , Hemocromatose/genética , Homeostase , Humanos , Células de Kupffer , Camundongos , Receptores de LDL
9.
Blood ; 129(13): 1823-1830, 2017 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-28188131

RESUMO

Patients with myelofibrosis (MF) often develop anemia and frequently become dependent on red blood cell transfusions. Results from a phase 2 study for the treatment of MF with the Janus kinase 1/2 (JAK1/2) inhibitor momelotinib (MMB) demonstrated that MMB treatment ameliorated anemia, which was unexpected for a JAK1/2 inhibitor, because erythropoietin-mediated JAK2 signaling is essential for erythropoiesis. Using a rat model of anemia of chronic disease, we demonstrated that MMB treatment can normalize hemoglobin and red blood cell numbers. We found that this positive effect is driven by direct inhibition of the bone morphogenic protein receptor kinase activin A receptor, type I (ACVR1), and the subsequent reduction of hepatocyte hepcidin production. Of note, ruxolitinib, a JAK1/2 inhibitor approved for the treatment of MF, had no inhibitory activity on this pathway. Further, we demonstrated the effect of MMB is not mediated by direct inhibition of JAK2-mediated ferroportin (FPN1) degradation, because neither MMB treatment nor myeloid-specific deletion of JAK2 affected FPN1 expression. Our data support the hypothesis that the improvement of inflammatory anemia by MMB results from inhibition of ACVR1-mediated hepcidin expression in the liver, which leads to increased mobilization of sequestered iron from cellular stores and subsequent stimulation of erythropoiesis.


Assuntos
Anemia/tratamento farmacológico , Benzamidas/uso terapêutico , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/antagonistas & inibidores , Hepcidinas/biossíntese , Pirimidinas/uso terapêutico , Receptores de Ativinas Tipo I/antagonistas & inibidores , Animais , Benzamidas/farmacologia , Doença Crônica , Hepatócitos/metabolismo , Ferro/metabolismo , Mielofibrose Primária/complicações , Pirimidinas/farmacologia , Ratos
10.
Gerontology ; 65(1): 45-56, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30165362

RESUMO

BACKGROUND: Atherosclerosis is the leading cause of death worldwide. The disease development is by and large driven by old age and lifestyle factors, such as diet, physical activity, and smoking. In the present study, we have investigated the effect of exercise and diet on the development of atherosclerosis in young and aged mice. OBJECTIVE: This study aimed at comparing multiple age-dependent factors that may influence atherosclerosis in a transgenic mouse model. METHODS: Young (14 weeks) and aged (49-52 weeks) C57BL/6 wild-type (WT) and atherosclerosis-prone ApoE-/- mice were subjected to physical endurance exercise on a treadmill, with or without a high-fat diet. Five weeks later, the frequencies of regulatory T cells (TREGs) in lymph nodes were assessed by flow cytometry, plasmatic cytokines (interleukin [IL]-1ß, IL-6, IL-10, IL-17, interferon-γ, tumor necrosis factor-α, and transforming growth factor [TGF]-ß1) levels were determined by Luminex assay. Lipids (cholesterol and triglycerides) and anti-heat shock protein 60 (HSP60) autoantibodies were measured by ELISA. Aortic lesion sizes were assessed by en face imaging. Microarray analysis and qPCR of skeletal muscle gene expression were also performed. RESULTS: Exercise leads to a reduction of aortic lesions in young ApoE-/- and aged WT mice independent of diet. In most groups, this reduction was followed by an increased proportion of TREGs and TGF-ß1 levels. Moreover, gene expression analysis showed that exercise seems to affect the AMPK signaling pathway. In particular, PGC-1α1 mRNA was induced in aged WT mice, whereas it was reduced in young ApoE-/- mice. In addition, GSEA analysis showed a marked reduction in the insulin signaling pathway in aged ApoE-/- mice. CONCLUSION: Practicing endurance exercise seems to be enough for reducing early aortic lesion formation, independent of diet. However, this was only true in mice with smaller aortic lesions, since mice with large, advanced, complicated atherosclerotic plaques did not show any reduction in lesion size with exercise training.


Assuntos
Aterosclerose , Dieta Hiperlipídica , Treino Aeróbico/métodos , Resistência Física/fisiologia , Transdução de Sinais/fisiologia , Animais , Aorta/patologia , Apolipoproteínas E/metabolismo , Aterosclerose/diagnóstico por imagem , Aterosclerose/metabolismo , Aterosclerose/terapia , Chaperonina 60/sangue , Colesterol/sangue , Dieta Hiperlipídica/efeitos adversos , Dieta Hiperlipídica/métodos , Interferon gama , Interleucinas/sangue , Interleucinas/classificação , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Análise em Microsséries/métodos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Resultado do Tratamento , Fator de Necrose Tumoral alfa/sangue
11.
Gerontology ; 64(1): 36-48, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28910785

RESUMO

BACKGROUND: Atherosclerosis is a chronic inflammatory disease of the artery wall where both innate and adaptive immunity play important roles. Modulation of the immune response against the stress protein antigen, heat shock protein (HSP) 60, by administration of mycobacterial HSP65 (mbHSP65) orally and/or nasally shows promising therapeutic results in young animals in the sense of less severe experimental atherosclerosis; however, the case of aged animals with already established atherosclerosis has so far never been investigated. OBJECTIVE: To investigate if mbHSP65 immunization would further accelerate atherosclerotic progression in aged ApoE-/- mice (18 months old) with already long-established atherosclerosis and if these mice could be orally tolerized against mbHSP65. METHODS: Aged wild-type (WT) and ApoE-/- mice (65 weeks) were immunized and/or orally treated with mbHSP65 and then either kept on normal chow or changed to high-cholesterol diet (HCD). Atherosclerosis was assessed by en face analysis and the number of CD4+CD25+FoxP3+ T regulatory cells (Tregs) was assessed by flow cytometry in lymph node and spleen cells. Total cholesterol and triglyceride levels were determined. Soluble mammalian HSP60 and anti-mouse HSP60 (mHSP60) and anti-mbHSP65 antibodies were detected by enzyme-linked immunosorbent assay. RESULTS: As expected, aged WT mice had only minor lesions in the aorta, which did not change under HCD for 14 weeks. Aged ApoE-/- mice already had large complicated plaques, which increased in size under HCD. mbHSP65 immunization led to a significant aggravation of atherosclerosis in both WT and ApoE-/- mice irrespective of the nature of their diet. This increase was accompanied by increased titers of both anti-mHSP60 and anti-mbHSP65 antibodies in the circulation. The increased plaque formation could be significantly diminished with oral mbHSP65 tolerization. An increased number of Tregs and lower or unchanged levels of cholesterol and triglycerides were associated with the reduced size of aortal lesions. CONCLUSION: Oral tolerization against mbHSP65 could be used both to prevent and to treat chronic atherosclerosis in aged individuals.


Assuntos
Envelhecimento/imunologia , Aterosclerose/prevenção & controle , Proteínas de Bactérias/administração & dosagem , Proteínas de Bactérias/imunologia , Chaperonina 60/administração & dosagem , Chaperonina 60/imunologia , Administração Oral , Envelhecimento/sangue , Envelhecimento/patologia , Animais , Aterosclerose/imunologia , Aterosclerose/patologia , Colesterol/sangue , Modelos Animais de Doenças , Feminino , Tolerância Imunológica , Imunomodulação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Triglicerídeos/sangue
12.
Cell Microbiol ; 18(10): 1374-89, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26866925

RESUMO

Macrophages are central for the immune control of intracellular microbes. Heme oxygenase 1 (HO-1, hmox) is the first and rate limiting enzyme in the breakdown of heme originating from degraded senescent erythrocytes and heme-proteins, yielding equal amounts of iron, carbon monoxide and biliverdin. HO-1 is strongly up-regulated in macrophages in response to inflammatory signals, including bacterial endotoxin. In view of the essential role of iron for the growth and proliferation of intracellular bacteria along with known effects of the metal on innate immune function, we examined whether HO-1 plays a role in the control of infection with the intracellular bacterium Salmonella Typhimurium. We studied the course of infection in stably-transfected murine macrophages (RAW264.7) bearing a tetracycline-inducible plasmid producing hmox shRNA and in primary HO-1 knockout macrophages. While uptake of bacteria into macrophages was not affected, a significantly reduced survival of intracellular Salmonella was observed upon hmox knockdown or pharmacological hmox inhibition, which was independent of Nramp1 functionality. This could be traced to limitation of iron availability for intramacrophage bacteria along with enhanced stimulation of innate immune effector pathways, including the formation of reactive oxygen and nitrogen species and increased TNF-α expression. Mechanistically, these latter effects result from intracellular iron limitation with subsequent activation of NF-κB and further inos, tnfa and p47phox transcription along with reduced formation of the anti-inflammatory and radical scavenging molecules, CO and biliverdin as a consequence of HO-1 silencing. Taken together our data provide novel evidence that the infection-driven induction of HO-1 exerts detrimental effects in the early control of Salmonella infection, whereas hmox inhibition can favourably modulate anti-bacterial immune effector pathways of macrophages and promote bacterial elimination.


Assuntos
Heme Oxigenase-1/fisiologia , Proteínas de Membrana/fisiologia , Infecções por Salmonella/enzimologia , Salmonella typhimurium/imunologia , Animais , Indução Enzimática , Expressão Gênica/imunologia , Células HEK293 , Humanos , Imunidade Inata , Ferro/metabolismo , Camundongos , Viabilidade Microbiana , NF-kappa B/metabolismo , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Infecções por Salmonella/microbiologia
13.
Eur J Immunol ; 45(11): 3073-86, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26332507

RESUMO

Lipocalin-2 (Lcn2) is an innate immune peptide with pleiotropic effects. Lcn2 binds iron-laden bacterial siderophores, chemo-attracts neutrophils and has immunomodulatory and apoptosis-regulating effects. In this study, we show that upon infection with Salmonella enterica serovar Typhimurium, Lcn2 promotes iron export from Salmonella-infected macrophages, which reduces cellular iron content and enhances the generation of pro-inflammatory cytokines. Lcn2 represses IL-10 production while augmenting Nos2, TNF-α, and IL-6 expression. Lcn2(-/-) macrophages have elevated IL-10 levels as a consequence of increased iron content. The crucial role of Lcn-2/IL-10 interactions was further demonstrated by the greater ability of Lcn2(-/-) IL-10(-/-) macrophages and mice to control intracellular Salmonella proliferation in comparison to Lcn2(-/-) counterparts. Overexpression of the iron exporter ferroportin-1 in Lcn2(-/-) macrophages represses IL-10 and restores TNF-α and IL-6 production to the levels found in wild-type macrophages, so that killing and clearance of intracellular Salmonella is promoted. Our observations suggest that Lcn2 promotes host resistance to Salmonella Typhimurium infection by binding bacterial siderophores and suppressing IL-10 production, and that both functions are linked to its ability to shuttle iron from macrophages.


Assuntos
Proteínas de Fase Aguda/imunologia , Homeostase/imunologia , Ferro/metabolismo , Lipocalinas/imunologia , Macrófagos/metabolismo , Proteínas Oncogênicas/imunologia , Salmonelose Animal/imunologia , Proteínas de Fase Aguda/metabolismo , Animais , Western Blotting , Lipocalina-2 , Lipocalinas/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Oncogênicas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Salmonelose Animal/metabolismo , Salmonella typhimurium , Transfecção
14.
Arterioscler Thromb Vasc Biol ; 35(1): 229-36, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25359861

RESUMO

OBJECTIVE: The enzyme heme oxygenase-1 (HO-1) exerts cytoprotective effects in response to various cellular stressors. A variable number tandem repeat polymorphism in the HO-1 gene promoter region has previously been linked to cardiovascular disease. We examined this association prospectively in the general population. APPROACH AND RESULTS: Incidence of stroke, myocardial infarction, or vascular death was registered between 1995 and 2010 in 812 participants of the Bruneck Study aged 45 to 84 years (49.4% males). Carotid atherosclerosis progression was quantified by high-resolution ultrasound. HO-1 variable number tandem repeat length was determined by polymerase chain reaction. Subjects with ≥32 tandem repeats on both HO-1 alleles compared with the rest of the population (recessive trait) featured substantially increased cardiovascular disease risk (hazard ratio [95% confidence interval], 5.45 [2.39, 12.42]; P<0.0001), enhanced atherosclerosis progression (median difference in atherosclerosis score [interquartile range], 2.1 [0.8, 5.6] versus 0.0 [0.0, 2.2] mm; P=0.0012), and a trend toward higher levels of oxidized phospholipids on apolipoprotein B-100 (median oxidized phospholipids/apolipoprotein B level [interquartile range], 11364 [4160, 18330] versus 4844 [3174, 12284] relative light units; P=0.0554). Increased cardiovascular disease risk in those homozygous for ≥32 repeats was also detected in a pooled analysis of 7848 participants of the Bruneck, SAPHIR, and KORA prospective studies (hazard ratio [95% confidence interval], 3.26 [1.50, 7.33]; P=0.0043). CONCLUSIONS: This study found a strong association between the HO-1 variable number tandem repeat polymorphism and cardiovascular disease risk confined to subjects with a high number of repeats on both HO-1 alleles and provides evidence for accelerated atherogenesis and decreased antioxidant defense in this vascular high-risk group.


Assuntos
Aterosclerose/enzimologia , Aterosclerose/genética , Doenças Cardiovasculares/enzimologia , Doenças Cardiovasculares/genética , Heme Oxigenase-1/genética , Repetições Minissatélites , Polimorfismo Genético , Regiões Promotoras Genéticas , Idoso , Idoso de 80 Anos ou mais , Apolipoproteína B-100/sangue , Aterosclerose/sangue , Aterosclerose/diagnóstico , Aterosclerose/mortalidade , Áustria/epidemiologia , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/mortalidade , Progressão da Doença , Feminino , Marcadores Genéticos , Predisposição Genética para Doença , Heterozigoto , Homozigoto , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/mortalidade , Oxirredução , Fenótipo , Fosfolipídeos/sangue , Modelos de Riscos Proporcionais , Estudos Prospectivos , Fatores de Risco , Acidente Vascular Cerebral/enzimologia , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/mortalidade
15.
Gut ; 63(12): 1951-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24598129

RESUMO

OBJECTIVE: Hypoxia affects body iron homeostasis; however, the underlying mechanisms are incompletely understood. DESIGN: Using a standardised hypoxia chamber, 23 healthy volunteers were subjected to hypoxic conditions, equivalent to an altitude of 5600 m, for 6 h. Subsequent experiments were performed in C57BL/6 mice, CREB-H knockout mice, primary hepatocytes and HepG2 cells. RESULTS: Exposure of subjects to hypoxia resulted in a significant decrease of serum levels of the master regulator of iron homeostasis hepcidin and elevated concentrations of platelet derived growth factor (PDGF)-BB. Using correlation analysis, we identified PDGF-BB to be associated with hypoxia mediated hepcidin repression in humans. We then exposed mice to hypoxia using a standardised chamber and observed downregulation of hepatic hepcidin mRNA expression that was paralleled by elevated serum PDGF-BB protein concentrations and higher serum iron levels as compared with mice housed under normoxic conditions. PDGF-BB treatment in vitro and in vivo resulted in suppression of both steady state and BMP6 inducible hepcidin expression. Mechanistically, PDGF-BB inhibits hepcidin transcription by downregulating the protein expression of the transcription factors CREB and CREB-H, and pharmacological blockade or genetic ablation of these pathways abrogated the effects of PDGF-BB toward hepcidin expression. CONCLUSIONS: Hypoxia decreases hepatic hepcidin expression by a novel regulatory pathway exerted via PDGF-BB, leading to increased availability of circulating iron that can be used for erythropoiesis.


Assuntos
Hepcidinas/metabolismo , Hipóxia/metabolismo , Ferro/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-sis/farmacologia , Adulto , Animais , Becaplermina , Modelos Animais de Doenças , Regulação para Baixo , Eritropoese/fisiologia , Feminino , Voluntários Saudáveis , Fármacos Hematológicos/farmacologia , Células Hep G2 , Humanos , Hipóxia/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
16.
Elife ; 122023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37603466

RESUMO

Delta-like homolog 1 (Dlk1), an inhibitor of adipogenesis, controls the cell fate of adipocyte progenitors. Experimental data presented here identify two independent regulatory mechanisms, transcriptional and translational, by which Ifrd1 (TIS7) and its orthologue Ifrd2 (SKMc15) regulate Dlk1 levels. Mice deficient in both Ifrd1 and Ifrd2 (dKO) had severely reduced adipose tissue and were resistant to high-fat diet-induced obesity. Wnt signaling, a negative regulator of adipocyte differentiation, was significantly upregulated in dKO mice. Elevated levels of the Wnt/ß-catenin target protein Dlk1 inhibited the expression of adipogenesis regulators Pparg and Cebpa, and fatty acid transporter Cd36. Although both Ifrd1 and Ifrd2 contributed to this phenotype, they utilized two different mechanisms. Ifrd1 acted by controlling Wnt signaling and thereby transcriptional regulation of Dlk1. On the other hand, distinctive experimental evidence showed that Ifrd2 acts as a general translational inhibitor significantly affecting Dlk1 protein levels. Novel mechanisms of Dlk1 regulation in adipocyte differentiation involving Ifrd1 and Ifrd2 are based on experimental data presented here.


Assuntos
Adipogenia , Proteínas de Ligação ao Cálcio , Proteínas Imediatamente Precoces , Proteínas de Membrana , Animais , Camundongos , Adipócitos , Adipogenia/genética , Tecido Adiposo , Proteínas de Ligação ao Cálcio/genética , Antígenos CD36 , Diferenciação Celular , Proteínas de Membrana/genética
17.
Heliyon ; 9(11): e21893, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034686

RESUMO

Background: Toll-like receptors (TLRs) play a pivotal role in the immunologic response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Exaggerated inflammatory response of innate immune cells, however, may drive morbidity and death in Coronavirus disease 19 (COVID-19). Objective: We investigated the engagement of SARS-CoV-2 with TLR4 in order to better understand how to tackle hyperinflammation in COVID-19. Methods: We combined RNA-sequencing data of human lung tissue and of bronchoalveolar lavage fluid cells derived from COVID-19 patients with functional studies in human macrophages using SARS-CoV-2 spike proteins and viable SARS-CoV-2. Pharmacological inhibitors as well as gene editing with CRISPR/Cas9 were used to delineate the signalling pathways involved. Results: We found TLR4 to be the most abundantly upregulated TLR in human lung tissue irrespective of the underlying pathology. Accordingly, bronchoalveolar lavage fluid cells from patients with severe COVID-19 showed an NF-κB-pathway dominated immune response, whereas they were mostly defined by type I interferon signalling in moderate COVID-19. Mechanistically, we found the Spike ectodomain, but not receptor binding domain monomer to induce TLR4-dependent inflammation in human macrophages. By using pharmacological inhibitors as well as CRISPR/Cas9 deleted macrophages, we identify SARS-CoV-2 to engage canonical TLR4-MyD88 signalling. Importantly, we demonstrate that TLR4 blockage prevents exaggerated inflammatory responses in human macrophages infected with different SARS-CoV-2 variants, including immune escape variants B.1.1.7.-E484K and B.1.1.529 (omicron). Conclusion: Our study critically extends the current knowledge on TLR-mediated hyperinflammatory responses to SARS-CoV-2 in human macrophages, paving the way for novel approaches to tackle severe COVID-19. Take-home message: Our study combining human lung transcriptomics with functional studies in human macrophages clearly supports the design and development of TLR4 - directed therapeutics to mitigate hyperinflammation in severe COVID-19.

18.
Bio Protoc ; 12(11): e4440, 2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35799903

RESUMO

Macrophages are important for host defense against intracellular pathogens like Salmonella and can be differentiated into two major subtypes. M1 macrophages, which are pro-inflammatory and induce antimicrobial immune effector mechanisms, including the expression of inducible nitric oxide synthase (iNOS), and M2 macrophages, which exert anti-inflammatory functions and express arginase 1 (ARG1). Through the process of phagocytosis, macrophages contain, engulf, and eliminate bacteria. Therefore, they are one of the first lines of defense against Salmonella. Infection with Salmonella leads to gastrointestinal disorders and systemic infection, termed typhoid fever. For further characterization of infection pathways, we established an in vitro model where macrophages are infected with the mouse Salmonella typhi correlate Salmonella enterica serovar Typhimurium ( S. tm), which additionally expresses red fluorescent protein (RFP). This allows us to clearly characterize macrophages that phagocytosed the bacteria, using multi-color flow cytometry. In this protocol, we focus on the in vitro characterization of pro- and anti-inflammatory macrophages displaying red fluorescent protein-expressing Salmonella enterica serovar Typhimurium, by multi-color flow cytometry.

19.
Metabolites ; 12(3)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35323713

RESUMO

Iron is an essential component for metabolic processes, including oxygen transport within hemoglobin, tricarboxylic acid (TCA) cycle activity, and mitochondrial energy transformation. Iron deficiency can thus lead to metabolic dysfunction and eventually result in iron deficiency anemia (IDA), which affects approximately 1.5 billion people worldwide. Using a rat model of IDA induced by phlebotomy, we studied the effects of IDA on mitochondrial respiration in peripheral blood mononuclear cells (PBMCs) and the liver. Furthermore, we evaluated whether the mitochondrial function evaluated by high-resolution respirometry in PBMCs reflects corresponding alterations in the liver. Surprisingly, mitochondrial respiratory capacity was increased in PBMCs from rats with IDA compared to the controls. In contrast, mitochondrial respiration remained unaffected in livers from IDA rats. Of note, citrate synthase activity indicated an increased mitochondrial density in PBMCs, whereas it remained unchanged in the liver, partly explaining the different responses of mitochondrial respiration in PBMCs and the liver. Taken together, these results indicate that mitochondrial function determined in PBMCs cannot serve as a valid surrogate for respiration in the liver. Metabolic adaptions to iron deficiency resulted in different metabolic reprogramming in the blood cells and liver tissue.

20.
Circulation ; 121(3): 366-74, 2010 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-20065167

RESUMO

BACKGROUND: The role of cholesteryl ester transfer protein (CETP) in the development of atherosclerosis is still open to debate. In the Investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events (ILLUMINATE) trial, inhibition of CETP in patients with high cardiovascular risk was associated with increased high-density lipoprotein levels but increased risk of cardiovascular morbidity and mortality. In this report, we present a prospective observational study of patients referred to coronary angiography in which CETP was examined in relation to morbidity and mortality. METHODS AND RESULTS: CETP concentration was determined in 3256 participants of the Ludwigshafen Risk and Cardiovascular Health (LURIC) study who were referred to coronary angiography at baseline between 1997 and 2000. Median follow-up time was 7.75 years. Primary and secondary end points were cardiovascular and all-cause mortality, respectively. CETP levels were higher in women and lower in smokers, in diabetic patients, and in patients with unstable coronary artery disease, respectively. In addition, CETP levels were correlated negatively with high-sensitivity C-reactive protein and interleukin-6. After adjustment for age, sex, medication, coronary artery disease status, cardiovascular risk factors, and diabetes mellitus, the hazard ratio for death in the lowest CETP quartile was 1.33 (1.07 to 1.65; P=0.011) compared with patients in the highest CETP quartile. Corresponding hazard ratios for death in the second and third CETP quartiles were 1.17 (0.92 to 1.48; P=0.19) and 1.10 (0.86 to 1.39; P=0.46), respectively. CONCLUSIONS: We interpret our data to suggest that low endogenous CETP plasma levels per se are associated with increased cardiovascular and all-cause mortality, challenging the rationale of pharmacological CETP inhibition.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol/sangue , Angiografia Coronária/estatística & dados numéricos , Doença da Artéria Coronariana , Idoso , Biomarcadores/sangue , Proteína C-Reativa/metabolismo , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/mortalidade , Doença da Artéria Coronariana/fisiopatologia , Feminino , Seguimentos , Humanos , Interleucina-6/sangue , Lipoproteínas/sangue , Masculino , Pessoa de Meia-Idade , Morbidade , Modelos de Riscos Proporcionais , Encaminhamento e Consulta/estatística & dados numéricos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa