RESUMO
Epigenetic-mediated gene regulation orchestrates brain cell-type gene expression programs, and epigenetic dysregulation is a major driver of aging and disease-associated changes. Proteins that mediate gene regulation are mostly localized to the nucleus; however, nuclear-localized proteins are often underrepresented in gene expression studies and have been understudied in the context of the brain. To address this challenge, we have optimized an approach for nuclei isolation that is compatible with proteomic analysis. This was coupled to a mass spectrometry protocol for detecting proteins in low-concentration samples. We have generated nuclear proteomes for neurons, microglia, and oligodendrocytes from the mouse brain cortex and identified cell-type nuclear proteins associated with chromatin structure and organization, chromatin modifiers such as transcription factors, and RNA-binding proteins, among others. Our nuclear proteomics platform paves the way for assessing brain cell type changes in the nuclear proteome across health and disease, such as neurodevelopmental, aging, neurodegenerative, and neuroinflammatory conditions. Data are available via ProteomeXchange with the identifier PXD053515.
Assuntos
Encéfalo , Núcleo Celular , Neurônios , Proteômica , Animais , Camundongos , Proteômica/métodos , Núcleo Celular/metabolismo , Núcleo Celular/química , Neurônios/metabolismo , Neurônios/citologia , Encéfalo/metabolismo , Encéfalo/citologia , Microglia/metabolismo , Microglia/citologia , Proteoma/análise , Proteoma/metabolismo , Oligodendroglia/metabolismo , Oligodendroglia/citologia , Proteínas Nucleares/metabolismo , Proteínas Nucleares/análise , Cromatina/metabolismo , Epigênese Genética , Espectrometria de MassasRESUMO
In termites, as in many social insects, some individuals specialize in colony defense, developing diverse weaponry. As workers of the termite Neocapritermes taracua (Termitidae: Termitinae) age, their efficiency to perform general tasks decreases, while they accumulate defensive secretions and increase their readiness to fight. This defensive mechanism involves self-sacrifice through body rupture during which an enzyme, stored as blue crystals in dorsal pouches, converts precursors produced by the labial glands into highly toxic compounds. Here, we identify both components of this activated defense system and describe the molecular basis responsible for the toxicity of N. taracua worker autothysis. The blue crystals are formed almost exclusively by a specific protein named BP76. By matching N. taracua transcriptome databases with amino acid sequences, we identified BP76 to be a laccase. Following autothysis, the series of hydroquinone precursors produced by labial glands get mixed with BP76, resulting in the conversion of relatively harmless hydroquinones into toxic benzoquinone analogues. Neocapritermes taracua workers therefore rely on a two-component activated defense system, consisting of two separately stored secretions that can react only after suicidal body rupture, which produces a sticky and toxic cocktail harmful to opponents.
Assuntos
Proteínas de Insetos/genética , Isópteros/genética , Animais , Análise por Conglomerados , Ativação Enzimática , Expressão Gênica , Perfilação da Expressão Gênica , Proteínas de Insetos/metabolismo , Isópteros/metabolismo , Lacase/genética , Lacase/metabolismo , Filogenia , Especificidade por Substrato , TranscriptomaRESUMO
Buff-tailed bumblebees, Bombus terrestris, use a male sex pheromone for premating communication. Its main component is a sesquiterpene, 2,3-dihydrofarnesol. This paper reports the isolation of a thiolase (acetyl-CoA thiolase, AACT_BT), the first enzyme involved in the biosynthetic pathway leading to formation of isoprenoids in the B. terrestris male sex pheromone. Characterisation of AACT_BT might contribute to a better understanding of pheromonogenesis in the labial gland of B. terrestris males. The protein was purified to apparent homogeneity by column chromatography with subsequent stepwise treatment. AACT_BT showed optimum acetyltransferase activity at pH 7.1 and was strongly inhibited by iodoacetamide. The enzyme migrated as a band with an apparent mass of 42.9 kDa on SDS-PAGE. MS analysis of an AACT_BT tryptic digest revealed high homology to representatives of the thiolase family. AACT_BT has 96 % amino acid sequence identity with the previously reported Bombus impatiens thiolase.
Assuntos
Acetil-CoA C-Acetiltransferase/metabolismo , Abelhas/metabolismo , Glândulas Salivares Menores/enzimologia , Atrativos Sexuais/biossíntese , Terpenos/metabolismo , Acetil-CoA C-Acetiltransferase/antagonistas & inibidores , Acetil-CoA C-Acetiltransferase/química , Sequência de Aminoácidos , Animais , Inibidores Enzimáticos/farmacologia , Concentração de Íons de Hidrogênio , Masculino , Dados de Sequência Molecular , Peso Molecular , Análise de SequênciaRESUMO
FAT/CD36 is a multifunctional glycoprotein that facilitates long-chain fatty acid (FA) uptake by cardiomyocytes and adipocytes and uptake of oxidized low density lipoproteins (oxLDL) by macrophages. CD36 also mediates FA-induced signaling to increase intracellular calcium in various cell types. The membrane-impermeable sulfo-N-hydroxysuccinimidyl (NHS) ester of oleate (SSO) irreversibly binds CD36 and has been widely used to inhibit CD36-dependent FA uptake and signaling to calcium. The inhibition mechanism and whether SSO modification of CD36 involves the FA-binding site remain unexplored. CHO cells expressing human CD36 were SSO-treated, and the protein was pulled down, deglycosylated, and resolved by electrophoresis. The CD36 band was extracted from the gel and digested for analysis by mass spectrometry. NHS derivatives react with primary or secondary amines on proteins to yield stable amide or imide bonds. Two oleoylated peptides, found only in SSO-treated samples, were identified with high contribution and confidence scores as carrying oleate modification of Lys-164. Lysine 164 lies within a predicted CD36 binding domain for FA and oxLDL. CHO cells expressing CD36 with mutated Lys-164 had impaired CD36 function in FA uptake and FA-induced calcium release from the endoplasmic reticulum, supporting the importance of Lys-164 for both FA effects. Furthermore, consistent with the importance of Lys-164 for oxLDL binding, SSO inhibited oxLDL uptake by macrophages. In conclusion, SSO accesses Lys-164 in the FA-binding site on CD36, and initial modeling of this site is presented. The data suggest competition between FA and oxLDL for access to the CD36 binding pocket.
Assuntos
Antígenos CD36/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Lipoproteínas LDL/metabolismo , Ácidos Oleicos/metabolismo , Ácidos Oleicos/farmacologia , Succinimidas/metabolismo , Succinimidas/farmacologia , Animais , Sítios de Ligação , Antígenos CD36/genética , Células CHO , Sinalização do Cálcio/fisiologia , Cricetinae , Cricetulus , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Humanos , Lipoproteínas LDL/genética , Estrutura Terciária de ProteínaRESUMO
Both cardiovascular disease and liver injury are major public health issues. Hyperhomocysteinemia has been linked to cardiovascular diseases, and defects in methyl group metabolism, often resulting in hyperhomocysteinemia, are among the key molecular events postulated to play a role in liver injury. We employed proteomics and metabolomics analyses of human hepatocytes in primary cell culture to explore the spectrum of proteins and associated metabolites affected by the disruption of methyl group metabolism. We treated the hepatocytes with homocysteine (Hcy, 0.1mM and 2mM) to follow the impact of hyperhomocysteinemia, and in parallel, we used a specific inhibitor of betaine-homocysteine S-methyltransferase (BHMT) to extend our understanding of the physiological functions of the enzyme. The major effect of BHMT inhibition was a 50% decrease in S-adenosylmethionine levels. The treatments with Hcy resulted in multiple changes in the metabolite levels depending on the treatment modality. The BHMT inhibition and 0.1mM Hcy treatment induced only moderate changes in the hepatocyte proteome and secretome, while the changes induced by the 2mM Hcy treatment were extensive. Phosphatidylethanolamine carboxykinase and ornithine aminotransferase were up-regulated about two fold indicating an intervention into metabolism. Cellular proliferation was suspended, secretome composition was changed and signs of apoptosis were discernible. We have detected fibrinogen gamma dimers, which might have a role as a potentially new biomarker of early liver injury. Finally, we have demonstrated the failed maturation of apolipoprotein A1, which might be a new mechanism of disruption of cholesterol efflux from tissues.
Assuntos
Betaína-Homocisteína S-Metiltransferase/antagonistas & inibidores , Neoplasias Colorretais/patologia , Hepatócitos/metabolismo , Hiper-Homocisteinemia/metabolismo , Neoplasias Hepáticas/patologia , Metabolômica , Proteoma/análise , Apolipoproteína A-I/metabolismo , Apoptose , Betaína-Homocisteína S-Metiltransferase/metabolismo , Western Blotting , Proliferação de Células , Células Cultivadas , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Eletroforese em Gel Bidimensional , Fibrinogênio/metabolismo , Hepatócitos/efeitos dos fármacos , Homocisteína/farmacologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Masculino , Pessoa de Meia-Idade , Multimerização Proteica , Proteoma/metabolismo , S-Adenosilmetionina/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
Ghrelin, the only known peripherally produced and centrally acting peptide that stimulates food intake, is synthesized primarily in the stomach and acts through the growth hormone secretagogue receptor (GHS-R1a). In addition to its orexigenic effect, ghrelin stimulates the release of growth hormone (GH). In this study, we investigated the biological properties of full-length and shortened ghrelin analogs in which octanoylated Ser(3) is replaced with an octanoic acid moiety coupled to diaminopropionic acid (Dpr). Ghrelin analogs stabilized with Dpr(N-octanoyl) in position 3 and noncoded amino acids in position 1 (sarcosine) and/or position 4 (naphthylalanine or cyclohexylalanine) were found to possess affinities similar to those of ghrelin for cell membranes with transfected GHS-R1a. In vivo, the prolonged orexigenic effects of analogs containing Dpr(N-octanoyl)(3) compared with that of ghrelin in adult mice and a similar impact on GH secretion in young mice were found. Full-length [Dpr(N-octanoyl)(3)]ghrelin and its analogs with a noncoded amino acid in position 1 and/or 4 showed significantly prolonged stability in blood plasma compared with that of ghrelin. Ghrelin analogs with a prolonged orexigenic effect are potential treatments for GH deficiency or cachexia that accompanies chronic diseases. Desoctanoylated ghrelin analogs and N-terminal penta- and octapeptides of ghrelin did not show any biological activity.
Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Grelina/análogos & derivados , Sequência de Aminoácidos , Animais , Grelina/síntese química , Grelina/metabolismo , Hormônio do Crescimento/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Receptores de Grelina/metabolismo , Relação Estrutura-AtividadeRESUMO
The present article describes a miniaturized polyacrylamide slab gel electrophoresis-chip (PASGE-Chip) that can rapidly separate a set of predefined samples as well as cell lysate samples for clinical diagnosis. The chip consists of a polymethyl methacrylate (PMMA) upper unit (25 x 30 x 10 mm, width x length x depth) with integrated buffer chambers, running electrodes and loading wells and a bottom unit comprising a silicon dioxide-coated silicon plate with embossed gel chamber (11 x 15 x 0.37 mm). This miniaturized device was designed to be fast, easy to use and cheap to produce. The polyacrylamide slab gel electrophoresis can be performed in less than 10 min with low voltage. The gel-to-gel repeatability is around 3.8%. The limit of detection is approx. 10 ng as determined by Coomassie staining of selected standard proteins, and corresponds to a 10-fold increase in sensitivity as compared with a common size PAGE analysis device (e.g. 10 x 7 cm). The device was successfully applied to peptide mass fingerprint analysis, protein sequencing and ultra-sensitive immunodetection, and the performance was compared to a commonly used regular PAGE device.
Assuntos
Eletroforese em Gel de Poliacrilamida/instrumentação , Eletroforese em Gel de Poliacrilamida/métodos , Proteínas/análise , Sequência de Aminoácidos , Células Cultivadas , Peptídeos/química , Sensibilidade e Especificidade , Análise de Sequência de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
Partitioning of the genome requires kinetochores, large protein complexes that mediate dynamic attachment of chromosomes to the spindle. Kinetochores contain two supramolecular protein assemblies. The ten-protein KMN network harbors key microtubule-binding sites in the Ndc80 complex and mediates assembly of checkpoint complexes via the KNL-1/Spc105 protein [1, 2]. As KMN does not contact DNA directly, it relies on different centromere-binding proteins for recruitment and cell-cycle-dependent assembly. These proteins are collectively referred to as the CCAN (constitutive centromere-associated network) [2-4]. The molecular mechanisms by which CCAN subunits associate, however, have remained incompletely defined. In particular, it is unclear how CCAN subunits facilitate the assembly of a microtubule-binding interface that contains multiple Ndc80 molecules bound to different receptors [5]. Here, we dissect molecular mechanisms that underlie targeting of the CCAN subunit Cnn1/CENP-T to the sequence-determined point centromeres of budding yeast. Systematic quantitative mass spectrometry experiments reveal association dependencies within the yeast CCAN network. We show that evolutionarily conserved residues in the histone-fold domain of Cnn1 are required for the formation of a stable five-subunit CCAN subassembly with the Ctf3 complex. Cnn1 localizes in a Ctf3-dependent manner to the core of the yeast point centromere, overlapping with the yeast CENP-A protein Cse4. By arranging the N-terminal domains of the CCAN subunits Mcm16, Mcm22, and Cnn1 into close proximity, the Ctf3c-Cnn1-Wip1 complex configures a composite interaction site for two molecules of the Ndc80 complex. Our experiments show how cooperative assembly mechanisms organize the microtubule-binding interface of the kinetochore.
Assuntos
Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cinetocoros/metabolismoRESUMO
This work deals with zone electrophoresis (ZE) separations of proteins on a poly(methyl methacrylate) chip with integrated conductivity detection. Experiments were performed in the cationic mode of the separation (pH 2.9) with a hydrodynamically closed separation compartment and suppressed electroosmotic flow. The test proteins reached the detector in less than 10 min under these working conditions and their migration times characterized excellent repeatabilities (0.1-0.6% RSD values). The chip-to-chip agreements of the migration times, evaluated from the ZE runs performed on three chips, were within 1.5%. The conductivity detection provided for protein, loaded on the chip at 10-1000 microg/ml concentrations, detection responses were characterized by 1-5% RSD values of their peak areas. Such migration and detection performances made a frame for reproducible baseline separations of a five-constituent mixture (cytochrome c, avidin, conalbumin, human hemoglobin and trypsin inhibitor). On the other hand, a high sample injection channel/separation compartment volume ratio of the chip (500 nl/8500 nl) restricted the resolution of proteins of very close effective mobilities in spite of the fact that in the initial phase of the separation an electric field stacking was applied. A maximum macroconstituent/trace constituent ratio attainable for proteins on the chip was assessed for cytochrome c (quantifiable when its concentration in the loaded sample was 10 microg/ml) and apo-transferrin (containing a trace constituent migrating in the position of cytochrome c detectable when the load of apo-transferrin was 2000 microg/ml). This assessment indicated that a ratio of 1000:1 is attainable with the aid of conductivity detection on the present chip.
Assuntos
Eletroforese/instrumentação , Polimetil Metacrilato/química , Proteínas/isolamento & purificação , Condutividade Elétrica , EletroquímicaRESUMO
Kinetochores are megadalton-sized protein complexes that mediate chromosome-microtubule interactions in eukaryotes. How kinetochore assembly is triggered specifically on centromeric chromatin is poorly understood. Here we use biochemical reconstitution experiments alongside genetic and structural analysis to delineate the contributions of centromere-associated proteins to kinetochore assembly in yeast. We show that the conserved kinetochore subunits Ame1(CENP-U) and Okp1(CENP-Q) form a DNA-binding complex that associates with the microtubule-binding KMN network via a short Mtw1 recruitment motif in the N terminus of Ame1. Point mutations in the Ame1 motif disrupt kinetochore function by preventing KMN assembly on chromatin. Ame1-Okp1 directly associates with the centromere protein C (CENP-C) homologue Mif2 to form a cooperative binding platform for outer kinetochore assembly. Our results indicate that the key assembly steps, CENP-A recognition and outer kinetochore recruitment, are executed through different yeast constitutive centromere-associated network subunits. This two-step mechanism may protect against inappropriate kinetochore assembly similar to rate-limiting nucleation steps used by cytoskeletal polymers.
Assuntos
Autoantígenos/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Proteínas de Ciclo Celular/genética , Centrômero/genética , Proteína Centromérica A , Cromatina/genética , Proteínas de Ligação a DNA/genética , Proteínas Associadas aos Microtúbulos/genética , Complexos Multiproteicos/genética , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de SequênciaRESUMO
The CART (cocaine- and amphetamine-regulated transcript) peptide is an anorexigenic neuropeptide that acts in the hypothalamus. The receptor and the mechanism of action of this peptide are still unknown. In our previous study, we showed that the CART peptide binds specifically to PC12 rat pheochromocytoma cells in both the native and differentiated into neuronal phenotype. Two biologically active forms, CART(55-102) and CART(61-102), with equal biological activity, contain three disulfide bridges. To clarify the importance of each of these disulfide bridges in maintaining the biological activity of CART(61-102), an Ala scan at particular S-S bridges forming cysteines was performed, and analogs with only one or two disulfide bridges were synthesized. In this study, a stabilized CART(61-102) analog with norleucine instead of methionine at position 67 was also prepared and was found to bind to PC12 cells with an anorexigenic potency similar to that of CART(61-102). The binding study revealed that out of all analogs tested, [Ala(68,86)]CART(61-102), which contains two disulfide bridges (positions 74-94 and 88-101), preserved a high affinity to both native PC12 cells and those that had been differentiated into neurons. In food intake and behavioral tests with mice after intracerebroventricular administration, this analog showed strong and long-lasting anorexigenic potency. Therefore, the disulfide bridge between cysteines 68 and 86 in CART(61-102) can be omitted without a loss of biological activity, but the preservation of two other disulfide bridges and the full-length peptide are essential for biological activity.
Assuntos
Depressores do Apetite/farmacologia , Cistina/química , Proteínas do Tecido Nervoso/farmacologia , Fragmentos de Peptídeos/farmacologia , Animais , Depressores do Apetite/química , Ligação Competitiva , Ingestão de Alimentos/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/química , Nociceptividade/efeitos dos fármacos , Células PC12 , Fragmentos de Peptídeos/química , RatosRESUMO
BACKGROUND: In addition to their general role in the hydrolysis of storage lipids, bumblebee lipases can participate in the biosynthesis of fatty acids that serve as precursors of pheromones used for sexual communication. RESULTS: We studied the temporal dynamics of lipolytic activity in crude extracts from the cephalic part of Bombus terrestris labial glands. Extracts from 3-day-old males displayed the highest lipolytic activity. The highest lipase gene expression level was observed in freshly emerged bumblebees, and both gene expression and lipase activity were lower in bumblebees older than 3 days. Lipase was purified from labial glands, further characterized and named as BT-1. The B. terrestris orthologue shares 88% sequence identity with B. impatiens lipase HA. The molecular weight of B. terrestris lipase BT-1 was approximately 30 kDa, the pH optimum was 8.3, and the temperature optimum was 50°C. Lipase BT-1 showed a notable preference for C8-C10 p-nitrophenyl esters, with the highest activity toward p-nitrophenyl caprylate (C8). The Michaelis constant (Km) and maximum reaction rate (Vmax) for p-nitrophenyl laurate hydrolysis were Km = 0.0011 mM and Vmax = 0.15 U/mg. CONCLUSION: This is the first report describing neutral lipase from the labial gland of B. terrestris. Our findings help increase understanding of its possible function in the labial gland.
Assuntos
Abelhas/metabolismo , Lipase/metabolismo , Animais , Abelhas/genética , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Expressão Gênica/genética , Concentração de Íons de Hidrogênio , Hidrólise , Lipase/genética , Masculino , Feromônios/genética , Feromônios/metabolismo , Especificidade por SubstratoRESUMO
Betaine-homocysteine S-methyltransferase 2 (BHMT-2) catalyzes the transfer of a methyl group from S-methylmethionine to l-homocysteine, yielding two molecules of l-methionine. It is one of three homocysteine methyltransferases in mammals, but its overall contribution to homocysteine remethylation and sulfur amino acid homeostasis is not known. Moreover, recombinant BHMT-2 is highly unstable, which has slowed research on its structural and catalytic properties. In this study, we have prepared the first series of BHMT-2 inhibitors to be described, and we have tested them with human recombinant BHMT-2 that has been stabilized by copurification with human recombinant BHMT. Among the compounds synthesized, (2S,8RS,11RS)-5-thia-2,11-diamino-8-methyldodecanedioic acid (11) was the most potent (K(i)(app) â¼77 nM) and selective inhibitor of BHMT-2. Compound 11 only weakly inhibited human BHMT (IC(50) about 77 µM). This compound (11) may be useful in future in vivo studies to probe the physiological significance of BHMT-2 in sulfur amino acid metabolism.
Assuntos
Betaína-Homocisteína S-Metiltransferase/antagonistas & inibidores , Homocisteína/análogos & derivados , Sulfetos/síntese química , Betaína-Homocisteína S-Metiltransferase/química , Ensaios Enzimáticos , Homocisteína/síntese química , Homocisteína/química , Humanos , Cinética , Proteínas Recombinantes/antagonistas & inibidores , Estereoisomerismo , Relação Estrutura-Atividade , Sulfetos/químicaRESUMO
We describe a miniaturized instrument capable of performing 2-DE. Our miniaturized device is able to perform IEF and polyacrylamide slab gel electrophoresis (PASGE) in the same unit. It consists of a compartment for a first-dimensional IEF gel, which is connected to a second-dimensional PASGE gel. The focused samples are automatically transferred from the IEF gel to the PASGE gel by electromigration. Our preliminary experiments show that the device is able to focus and separate a mixture of proteins in approximately 1 h, excluding the time required for the staining procedure. On average, the gel-to-gel retardation factor (Rf) variation was 6.2% (+/-0.9%) and pI variation was 2.5% (+/-0.6%). Separated protein spots were excised from stained gels, digested with trypsin, and further identified by MS, thus enabling direct proteomic analysis of the separated proteins.
Assuntos
Eletroforese em Gel de Poliacrilamida/métodos , Lactoglobulinas/análise , Proteômica , Eletroforese em Gel Bidimensional/instrumentação , Eletroforese em Gel Bidimensional/métodos , Eletroforese em Gel de Poliacrilamida/instrumentação , Focalização Isoelétrica/instrumentação , Focalização Isoelétrica/métodos , Polímeros/química , Padrões de Referência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
Nonaqueous capillary electrophoretic separation of a group of flavonoids (quercetin, myricetin, catechin, epicatechin) and resveratrol in wine was investigated in methanol at high pH. Malonate background electrolyte (pH* 13.5, ionic strength I = 14.2 mmol/L) provided highly repeatable separations of the analytes. Tests of untreated and coated (poly(glycidylmethacrylate-co-N-vinylpyrrolidone)) capillaries showed the analysis to be faster (6.5 min vs. 25 min) and the repeatability better in the coated capillaries. The coating procedure was simple and highly repeatable and the coating was stable during 40-45 runs. Determination of the last migrating peaks (epicatechin, resveratrol and catechin) was achieved merely by evaporating the wine samples and reconstituting the residue in methanol. For determination of the first migrating peaks (quercetin and myricetin) the samples were submitted to solid-phase extraction in C8 cartridges.