Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Bioorg Chem ; 148: 107491, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788365

RESUMO

As a consequence of somatosensory nervous system injury or disease, neuropathic pain is commonly associated with chemotherapies, known as chemotherapy-induced peripheral neuropathy (CIPN). However, the mechanisms underlying CIPN-induced proteome aggregation in neuronal cells remain elusive due to limited detection tools. Herein, we present series sensors for fluorescence imaging (AggStain) and proteomics analysis (AggLink) to visualize and capture aggregated proteome in CIPN neuronal cell model. The environment-sensitive AggStain imaging sensor selectively binds and detects protein aggregation with 12.3 fold fluorescence enhancement. Further, the covalent AggLink proteomic sensor captures cellular aggregated proteins and profiles their composition via LC-MS/MS analysis. This integrative sensor platform reveals the presence of proteome aggregation in CIPN cell model and highlights its potential for broader applications in assessing proteome stability under various cellular stress conditions.


Assuntos
Antineoplásicos , Doenças do Sistema Nervoso Periférico , Proteoma , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/metabolismo , Humanos , Proteoma/análise , Proteoma/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Estrutura Molecular , Agregados Proteicos/efeitos dos fármacos , Imagem Óptica , Relação Dose-Resposta a Droga , Proteômica , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia
2.
Int J Cancer ; 153(5): 1016-1025, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37204683

RESUMO

Regimens based on Bruton's tyrosine kinase inhibitors (BTKi) have been increasingly used to treat mantle cell lymphoma (MCL). A real-world multicenter study was conducted to characterize treatment patterns and outcomes in patients with newly diagnosed MCL by Chinese Hematologist and Oncologist Innovation Cooperation of the Excellent (CHOICE). The final analysis included 1261 patients. Immunochemotherapy was the most common first-line treatment, including R-CHOP in 34%, cytarabine-containing regimens in 21% and BR in 3% of the patients. Eleven percent (n = 145) of the patients received BTKi-based frontline therapy. Seventeen percent of the patients received maintenance rituximab. Autologous hematopoietic stem cell transplantation (AHCT) was conducted in 12% of the younger (<65 years) patients. In younger patients, propensity score matching analysis did not show significant difference in 2-year progression-free survival and 5-year overall survival rate in patients receiving standard high-dose immunochemotherapy followed by AHCT than induction therapy with BTKi-based regimens without subsequent AHCT (72% vs 70%, P = .476 and 91% vs 84%, P = .255). In older patients, BTKi combined with bendamustine plus rituximab (BR) was associated with the lowest POD24 rate (17%) compared with BR and other BTKi-containing regimens. In patients with resolved hepatitis B at the baseline, HBV reactivation rate was 2.3% vs 5.3% in those receiving anti-HBV prophylaxis vs not; BTKi treatment was not associated with higher risk of HBV reactivation. In conclusion, non-HD-AraC chemotherapy combined with BTKi may be a viable therapeutic strategy for younger patients. Anti-HBV prophylaxis should be implemented in patients with resolved hepatitis B.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Hepatite B , Linfoma de Célula do Manto , Adulto , Humanos , Idoso , Linfoma de Célula do Manto/tratamento farmacológico , Rituximab/uso terapêutico , Estudos Retrospectivos , Protocolos de Quimioterapia Combinada Antineoplásica , Citarabina/uso terapêutico
3.
Anal Chem ; 95(31): 11751-11760, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37506028

RESUMO

The formation of amorphous misfolded and aggregated proteins is a hallmark of proteome stress in diseased cells. Given its lack of defined targeting sites, the rational design of intracellular proteome aggregation sensors has been challenging. Herein, we modulate the amphiphilicity of fluorescent protein chromophores to enable selective detection of aggregated proteins in different biological samples, including recombinant proteins, stressed live cells, intoxicated mouse liver tissue, and human hepatocellular carcinoma tissue. By tuning the number of hydroxyl groups, we optimize the selectivity of fluorescent protein chromophores toward aggregated proteins in these biological samples. In recombinant protein applications, the most hydrophobic P0 (cLogP = 5.28) offers the highest fold change (FC = 31.6), sensitivity (LLOD = 0.1 µM), and brightness (Φ = 0.20) upon binding to aggregated proteins. In contrast, P4 of balanced amphiphilicity (cLogP = 2.32) is required for selective detection of proteome stresses in live cells. In mouse and human liver histology tissues, hydrophobic P1 exhibits the best performance in staining the aggregated proteome. Overall, the amphiphilicity of fluorescent chromophores governs the sensor's performance by matching the diverse nature of different biological samples. Together with common extracellular amyloid sensors (e.g., Thioflavin T), these sensors developed herein for intracellular amorphous aggregation complement the toolbox to study protein aggregation.


Assuntos
Agregados Proteicos , Proteoma , Camundongos , Humanos , Animais , Proteoma/química , Proteínas Recombinantes , Corantes , Amiloide , Corantes Fluorescentes/química
4.
Ecotoxicol Environ Saf ; 262: 115347, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37572624

RESUMO

Decomposition of plastic materials into minuscule particles and their long-term uptake pose increasing concerns on environmental sustainability and biosafety. Besides common cell viability and cytotoxicity evaluations, how plastic nanoparticles interfere with different stress response pathways and affect cellular fitness has been less explored. Here, we provided the first piece of evidence to demonstrate plastic nanoparticles potentially can deteriorate proteome stability, compromise cellular protein homeostasis, and consequently cause global proteome misfolding and aggregation. Polystyrene (PS) nanoparticles of different sizes and surface charges were exploited as model plastic materials. In cell lysate and human blood plasma, naked PS nanoparticles with hydrophobic surface deteriorated proteome thermodynamic stability and exaggerated its aggregation propensity. While no cell viability ablation was observed in cells treated with PS nanoparticles up to 200 µg·mL-1, global proteome aggregation and stress was detected by a selective proteome aggregation sensor. Further proteomics analysis revealed how protein homeostasis network was remodeled by positively charged PS nanoparticles via differential expression of key proteins to counteract proteome stress. In mice model, size-dependent liver accumulation of positively charged PS nanoparticles induced hepatocellular proteome aggregation and compromised protein homeostasis network capacity that were invisible to standard alanine transaminase and aspartate transaminase (ALT/AST) liver function as-say and histology. Meanwhile, long-term liver accumulation of plastic nanoparticles deteriorated liver metabolism and saturated liver detoxification capacity of overdosed acetaminophen. This work highlighted the impact of nanoplastics on cellular proteome integrity and cellular fitness that are invisible to current biochemical assays and clinical tests.

5.
Anal Chim Acta ; 1317: 342916, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39030013

RESUMO

BACKGROUND: Protein misfolding and aggregation can lead to various diseases. Recent studies have shed light on the aggregated protein in breast cancer pathology, which suggests that it is crucial to design chemical sensors that visualize protein aggregates in breast cancer, especially in clinical patient-derived samples. However, most reported sensors are constrained in cultured cell lines. RESULTS: In this work, we present the development of two isophorone-based crystallization-induced-emission fluorophores for detecting proteome aggregation in breast cancer cell line and tissues biopsied from diseased patients, designated as A1 and A2. These probes exhibited viscosity sensitivity and recovered their fluorescence strongly at crystalline state. Moreover, A1 and A2 exhibit selective binding capacity and strong fluorescence for various aggregated proteins. Utilizing these probes, we detect protein aggregation in stressed breast cancer cells, xenograft mouse model of human breast cancer and clinical patient-derived samples. Notably, the fluorescence intensity of both probes light up in tumor tissues. SIGNIFICANCE: The synthesized isophorone-based crystallization-induced-emission fluorophores, A1 and A2, enable sensitive detection of protein aggregation in breast cancer cells and tissues. In the future, aggregated proteins are expected to become indicators for early diagnosis and clinical disease monitoring of breast cancer.


Assuntos
Neoplasias da Mama , Cristalização , Corantes Fluorescentes , Proteoma , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Animais , Feminino , Corantes Fluorescentes/química , Proteoma/análise , Proteoma/química , Camundongos , Agregados Proteicos , Linhagem Celular Tumoral , Camundongos Nus
6.
ACS Sens ; 8(6): 2247-2254, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37248847

RESUMO

Given the extreme heterogeneity and the loss of defined protein structures, misfolded and aggregated proteins are technically challenging to visualize and analyze. Herein, we assembled an integrated sensor system to resolve aggregated proteome in live cells and animal liver tissues that are overdosed by non-steroidal anti-inflammatory drugs (NSAIDs). A fluorogenic protein aggregation sensor (AggStain) first discovered the presence of aggregated proteome upon overdosing liver cells with NSAIDs. A solvatochromic protein aggregation sensor (AggRetina) further quantified the compactness (polarity) inside these cellular aggregates. Importantly, we exploited a proteomic sensor (AggLink) to selectively capture aggregated proteins upon NSAID overdose and profile their composition, revealing global collapse of cellular protein homeostasis. Finally, we detected subtle proteome aggregation in mouse liver tissue without obvious acute injury at a low NSAID dosage. Overall, we demonstrated an integrated sensor toolset for proteome aggregation studies and unveiled for the first time that NSAID overdose can cause proteome aggregation in liver cells and tissues.


Assuntos
Overdose de Drogas , Proteoma , Animais , Camundongos , Agregados Proteicos , Proteômica , Anti-Inflamatórios não Esteroides/toxicidade , Fígado/metabolismo , Overdose de Drogas/diagnóstico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa