Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 53(5): 2778-2787, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30673286

RESUMO

Subsurface environments often contain mixtures of contaminants in which the microbial degradation of one pollutant may be inhibited by the toxicity of another. Agricultural settings exemplify these complex environments, where antimicrobial leachates may inhibit nitrate bioreduction, and are the motivation to address this fundamental ecological response. In this study, a microfluidic reactor was fabricated to create diffusion-controlled concentration gradients of nitrate and ciprofloxacin under anoxic conditions in order to evaluate the ability of Shewanella oneidenisis MR-1 to reduce the former in the presence of the latter. Results show a surprising ecological response, where swimming motility allow S. oneidensis MR-1 to accumulate and maintain metabolic activity for nitrate reduction in regions with toxic ciprofloxacin concentrations (i.e., 50× minimum inhibitory concentration, MIC), despite the lack of observed antibiotic resistance. Controls with limited nutrient flux and a nonmotile mutant (Δ flag) show that cells cannot colonize antibiotic rich microenvironments, and this results in minimal metabolic activity for nitrate reduction. These results demonstrate that under anoxic, nitrate-reducing conditions, motility can control microbial habitability and metabolic activity in spatially heterogeneous toxic environments.


Assuntos
Shewanella , Ciprofloxacina , Microfluídica , Nitratos , Óxidos de Nitrogênio
2.
Environ Sci Technol ; 53(14): 7996-8005, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31269400

RESUMO

A microfluidic gradient chamber (MGC) and a homogeneous batch culturing system were used to evaluate whether spatial concentration gradients of the antibiotic ciprofloxacin allow development of greater antibiotic resistance in Escherichia coli strain 307 (E. coli 307) compared to exclusively temporal concentration gradients, as indicated in an earlier study. A linear spatial gradient of ciprofloxacin and Luria-Bertani broth (LB) medium was established and maintained by diffusion over 5 days across a well array in the MGC, with relative concentrations along the gradient of 1.7-7.7× the original minimum inhibitory concentration (MICoriginal). The E. coli biomass increased in wells with lower ciprofloxacin concentrations, and only a low level of resistance to ciprofloxacin was detected in the recovered cells (∼2× MICoriginal). Homogeneous batch culture experiments were performed with the same temporal exposure history to ciprofloxacin concentration, the same and higher initial cell densities, and the same and higher nutrient (i.e., LB) concentrations as in the MGC. In all batch experiments, E. coli 307 developed higher ciprofloxacin resistance after exposure, ranging from 4 to 24× MICoriginal in all replicates. Hence, these results suggest that the presence of spatial gradients appears to reduce the driving force for E. coli 307 adaptation to ciprofloxacin, which suggests that results from batch experiments may over predict the development of antibiotic resistance in natural environments.


Assuntos
Ciprofloxacina , Infecções por Escherichia coli , Antibacterianos , Farmacorresistência Bacteriana , Escherichia coli , Humanos , Testes de Sensibilidade Microbiana
3.
Anal Chem ; 85(11): 5411-9, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23688280

RESUMO

Bacterial biofilms are a metabolically heterogeneous community of bacteria distributed in an extracellular matrix comprised primarily of hydrated polysaccharides. Effective inhibitory concentrations measured under planktonic conditions are not applicable to biofilms, and inhibition concentrations measured for biofilms vary widely. Here, we introduce a novel microfluidic approach for screening respiration inhibition of bacteria in a biofilm array morphology. The device geometry and operating conditions allow antimicrobial concentration and flux to vary systematically and predictably with space and time. One experiment can screen biofilm respiratory responses to many different antimicrobial concentrations and dosing rates in parallel. To validate the assay, onset of respiration inhibition following NaN3 exposure is determined optically using an O2-sensing thin film. Onset of respiration inhibition obeys a clear and reproducible pattern based on time for diffusive transport of the respiration inhibitor to each biofilm in the array. This approach can be used for high-throughput screening of antimicrobial effectiveness as a function of microbial characteristics, antimicrobial properties, or antimicrobial dosing rates. The approach may also be useful in better understanding acquired antimicrobial resistance or for screening antimicrobial combinations.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Técnicas Biossensoriais/métodos , Microquímica , Respiração/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Catalase/metabolismo , Simulação por Computador , Relação Dose-Resposta a Droga , Fluorescência , Peróxido de Hidrogênio/metabolismo , Testes de Sensibilidade Microbiana , Técnicas Analíticas Microfluídicas , Oxigênio/química , Oxigênio/metabolismo , Nitrito de Sódio/farmacologia
4.
Sci Total Environ ; 779: 146503, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34030234

RESUMO

In order to explore the impact of antibiotics on the bacterial metabolic cycling of nitrate within contaminated soil and groundwater environments, we compared the effects of polymyxin B (PMB) and ciprofloxacin (CIP) concentration gradients on the distribution and activity of a wild type (WT) and a flagella deficient mutant (Δflag) of Shewanella oneidensis MR-1 in a microfluidic gradient chamber (MGC). Complementary batch experiments were performed to measure bacteriostatic versus bactericidal concentrations of the two antibiotics, as well as their effect on nitrate reduction. Prior work demonstrated that PMB disrupts cell membranes while CIP inhibits DNA synthesis. Consistent with these modes of action, batch results from this work show that PMB is bactericidal at lower concentrations than CIP relative to their respective minimum inhibitory concentrations (MICs) (≥5× MICPMB vs. ≥20× MICCIP). Concentration gradients from 0 to 50× the MIC of both antibiotics were established in the MGC across a 2-cm interconnected pore network, with nutrients injected at both concentration boundaries. The WT cells could only access and reduce nitrate in regions of the MGC with PMB at <18× MICPMB, whereas this occurred with CIP up to 50× MICCIP; and cells extracted from these MGCs showed no antibiotic resistance. The distribution of Δflag cells was further limited to lower antibiotic concentrations (≤1× MICPMB, ≤43× MICCIP) due to inability of movement. These results indicate that S. oneidensis access and reduce nitrate in bactericidal regions via chemotactic migration without development of antibiotic resistance, and that this migration is inhibited by acutely lethal bactericidal levels of antibiotics.


Assuntos
Antibacterianos , Nitratos , Antibacterianos/toxicidade , Ciprofloxacina/toxicidade , Resistência Microbiana a Medicamentos/genética , Testes de Sensibilidade Microbiana , Microfluídica , Nitratos/toxicidade , Shewanella
5.
J Phys Chem B ; 124(49): 11081-11088, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33232147

RESUMO

Since some antifreeze proteins and glycoproteins (AF(G)Ps) cannot directly bind to all ice crystal planes, they change ice crystal morphology by minimizing the area of the crystal planes to which they cannot bind until crystal growth is halted. Previous studies found that growth along the c-axis (perpendicular to the basal plane, the crystal plane to which these AF(G)Ps cannot bind) is accelerated by some AF(G)Ps, while growth of other planes is inhibited. The effects of this growth acceleration on crystal morphology and on the thermal hysteresis activity are unknown to date. Understanding these effects will elucidate the mechanism of ice growth inhibition by AF(G)Ps. Using cold stages and an infrared laser, ice growth velocities and crystal morphologies in AF(G)P solutions were measured. Three types of effects on growth velocity were found: concentration-dependent acceleration, concentration-independent acceleration, and concentration-dependent deceleration. Quantitative crystal morphology measurements in AF(G)P solutions demonstrated that the adsorption rate of the proteins to ice plays a major role in determining the morphology of the bipyramidal crystal. These results demonstrate that faster adsorption rates generate bipyramidal crystals with diminished basal surfaces at higher temperatures compared to slower adsorption rates. The acceleration of growth along the c-axis generates crystals with smaller basal surfaces at higher temperatures leading to increased growth inhibition of the entire crystal.


Assuntos
Proteínas Anticongelantes , Gelo , Aceleração , Adsorção , Cristalização , Congelamento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa