Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ann Bot ; 127(7): 853-864, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33035305

RESUMO

BACKGROUND AND AIMS: Theory predicts that outcrossing should be more prevalent among perennials than annuals, a pattern confirmed by comparative evidence from diverse angiosperm families. However, intraspecific comparisons between annual and perennial populations are few because such variation is uncommon among flowering plants. Here, we test the hypothesis that perennial populations outcross more than annual populations by investigating Incarvillea sinensis, a wide-ranging insect-pollinated herb native to China. The occurrence of both allopatric and sympatric populations allows us to examine the stability of mating system differences between life histories under varying ecological conditions. METHODS: We estimated outcrossing rates and biparental inbreeding in 16 allopatric and five sympatric populations in which both life histories coexisted using 20 microsatellite loci. In each population we measured height, branch number, corolla size, tube length and herkogamy for ~30 individuals. In a sympatric population, we recorded daily flower number, pollinator visitation and the fruit and seed set of annual and perennial plants. KEY RESULTS: As predicted, outcrossing rates (t) were considerably higher in perennial (mean = 0.76) than annual (mean = 0.09) populations. This difference in mating system was also maintained at sympatric sites where plants grew intermixed. In both allopatric and sympatric populations the degree of herkogamy was consistently larger in outcrossing than selfing plants. Perennials were more branched, with more and larger flowers than in annuals. In a sympatric population, annuals had a significantly higher fruit and seed set than perennials. CONCLUSIONS: Genetically based differences in herkogamy between annuals and perennials appear to play a key role in governing outcrossing rates in populations, regardless of variation in local ecological conditions. The maintenance of mating system and life history trait differentiation between perennial and annual populations of I. sinensis probably results from correlated evolution in response to local environmental conditions.


Assuntos
Flores , Reprodução , Animais , Flores/genética , Endogamia , Insetos , Polinização , Sementes
2.
Opt Express ; 24(3): 2307-17, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26906807

RESUMO

A concise method is proposed to fabricate L-shaped Ag nanostructures (LSANs) for generating chirality. Prepared by glancing angle deposition, the LSAN composed of two slices with different thickness is stacked on self-assembled monolayer polystyrene nanosphere arrays by controlling substrate azimuth and deposition time. The strong optical chirality of LSANs is achieved in visible and near-IR regions by measurement. For the circular dichroism spectrum of LSANs, the intensity is enlarged, and its peaks red-shift with increasing thickness difference. When LSANs are stacked on polystyrene spheres of different diameters, enlargement and red-shift are also observed in their circular dichroism spectra with increasing thickness difference. The numerical calculations of finite element method show that the two slices composing LSAN provide cross-electric dipoles and their thickness difference provides phase difference for generating optical chirality. This study not only provides a concise and scalable method for fabricating chiral plasmonic nanostructures but also contributes to understand the knowledge of the mechanism of circular dichroism.

3.
Front Psychol ; 14: 1269462, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37946875

RESUMO

Introduction: This study investigates the efficacy of sensory integration training (SIT) in enhancing balance and executive functions in children with autism spectrum disorder (ASD), with the aim of highlighting its potential for organizing and processing sensory information in the brain. Methods: Utilizing Footscan for biomechanical evidence and functional near-infrared spectroscopy (fNIRS) for neural activation, we engaged two participant groups: a control group (n = 9) and an experimental group (n = 9). Assessments involved the Sharpened Romberg Test (SRT) for balance under varied visual conditions and the Go/No-Go task for executive function. Results: The SIT intervention significantly improved balance function, particularly in Visual Deprivation (VD) scenarios. Neurophysiological data revealed heightened activation in the right Inferior Frontal Gyrus (R-IFG) and right Middle Frontal Gyrus (R-MFG), suggesting enhanced executive function. The potential of R-IFG/MFG activation as a reliable biomarker for assessing executive function in ASD was identified. Discussion: The study provides empirical evidence supporting SIT's effectiveness in enhancing balance and executive functions in children with ASD. The therapy not only improves sensory processing and motor skills but also appears to compensate for sensory deficits, particularly in vision, vestibular perception, and proprioception. Enhanced neural activation in specific PFC regions underscores SIT's role in improving cognitive aspects, including inhibitory control and cognitive flexibility. The multidisciplinary approach adopted for this research highlights the intricate interplay between sensory-motor functions and cognitive control in ASD, paving the way for integrated therapeutic strategies. Despite these advancements, the mechanisms through which SIT exerts these multifaceted effects require further exploration.

4.
Front Physiol ; 14: 1135346, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035661

RESUMO

Sap-feeding hemipteran insects live in associations with diverse heritable symbiotic microorganisms (bacteria and fungi) that provide essential nutrients deficient in their hosts' diets. These symbionts typically reside in highly specialized organs called bacteriomes (with bacterial symbionts) or mycetomes (with fungal symbionts). The organization of these organs varies between insect clades that are ancestrally associated with different microbes. As these symbioses evolve and additional microorganisms complement or replace the ancient associates, the organization of the symbiont-containing tissue becomes even more variable. Planthoppers (Hemiptera: Fulgoromorpha) are ancestrally associated with bacterial symbionts Sulcia and Vidania, but in many of the planthopper lineages, these symbionts are now accompanied or have been replaced by other heritable bacteria (e.g., Sodalis, Arsenophonus, Purcelliella) or fungi. We know the identity of many of these microbes, but the symbiont distribution within the host tissues and the bacteriome organization have not been systematically studied using modern microscopy techniques. Here, we combine light, fluorescence, and transmission electron microscopy with phylogenomic data to compare symbiont tissue distributions and the bacteriome organization across planthoppers representing 15 families. We identify and describe seven primary types of symbiont localization and seven types of the organization of the bacteriome. We show that Sulcia and Vidania, when present, usually occupy distinct bacteriomes distributed within the body cavity. The more recently acquired gammaproteobacterial and fungal symbionts generally occupy separate groups of cells organized into distinct bacteriomes or mycetomes, distinct from those with Sulcia and Vidania. They can also be localized in the cytoplasm of fat body cells. Alphaproteobacterial symbionts colonize a wider range of host body habitats: Asaia-like symbionts often colonize the host gut lumen, whereas Wolbachia and Rickettsia are usually scattered across insect tissues and cell types, including cells containing other symbionts, bacteriome sheath, fat body cells, gut epithelium, as well as hemolymph. However, there are exceptions, including Gammaproteobacteria that share bacteriome with Vidania, or Alphaproteobacteria that colonize Sulcia cells. We discuss how planthopper symbiont localization correlates with their acquisition and replacement patterns and the symbionts' likely functions. We also discuss the evolutionary consequences, constraints, and significance of these findings.

5.
Genome Biol Evol ; 15(7)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37392458

RESUMO

The evolutionary success of sap-feeding hemipteran insects in the suborder Auchenorrhyncha was enabled by nutritional contributions from their heritable endosymbiotic bacteria. However, the symbiont diversity, functions, and evolutionary origins in this large insect group have not been broadly characterized using genomic tools. In particular, the origins and relationships among ancient betaproteobacterial symbionts Vidania (in Fulgoromorpha) and Nasuia/Zinderia (in Cicadomorpha) are uncertain. Here, we characterized the genomes of Vidania and Sulcia from three Pyrops planthoppers (family Fulgoridae) to understand their metabolic functions and evolutionary histories. We find that, like in previously characterized planthoppers, these symbionts share nutritional responsibilities, with Vidania providing seven out of ten essential amino acids. Sulcia lineages across the Auchenorrhyncha have a highly conserved genome but with multiple independent rearrangements occurring in an early ancestor of Cicadomorpha or Fulgoromorpha and in a few succeeding lineages. Genomic synteny was also observed within each of the betaproteobacterial symbiont genera Nasuia, Zinderia, and Vidania, but not across them, which challenges the expectation of a shared ancestry for these symbionts. The further comparison of other biological traits strongly suggests an independent origin of Vidania early in the planthopper evolution and possibly of Nasuia and Zinderia in their respective host lineages. This hypothesis further links the potential acquisition of novel nutritional endosymbiont lineages with the emergence of auchenorrhynchan superfamilies.


Assuntos
Betaproteobacteria , Hemípteros , Animais , Hemípteros/microbiologia , Filogenia , Simbiose/genética , Bactérias/genética , Insetos , Betaproteobacteria/genética
6.
PLoS One ; 18(7): e0286272, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37467453

RESUMO

Insects are diverse and sustain essential ecosystem functions, yet remain understudied. Recent reports about declines in insect abundance and diversity have highlighted a pressing need for comprehensive large-scale monitoring. Metabarcoding (high-throughput bulk sequencing of marker gene amplicons) offers a cost-effective and relatively fast method for characterizing insect community samples. However, the methodology applied varies greatly among studies, thus complicating the design of large-scale and repeatable monitoring schemes. Here we describe a non-destructive metabarcoding protocol that is optimized for high-throughput processing of Malaise trap samples and other bulk insect samples. The protocol details the process from obtaining bulk samples up to submitting libraries for sequencing. It is divided into four sections: 1) Laboratory workspace preparation; 2) Sample processing-decanting ethanol, measuring the wet-weight biomass and the concentration of the preservative ethanol, performing non-destructive lysis and preserving the insect material for future work; 3) DNA extraction and purification; and 4) Library preparation and sequencing. The protocol relies on readily available reagents and materials. For steps that require expensive infrastructure, such as the DNA purification robots, we suggest alternative low-cost solutions. The use of this protocol yields a comprehensive assessment of the number of species present in a given sample, their relative read abundances and the overall insect biomass. To date, we have successfully applied the protocol to more than 7000 Malaise trap samples obtained from Sweden and Madagascar. We demonstrate the data yield from the protocol using a small subset of these samples.


Assuntos
Biodiversidade , Ecossistema , Animais , Código de Barras de DNA Taxonômico/métodos , Insetos/genética , Etanol , DNA/genética
7.
BMC Ecol Evol ; 21(1): 181, 2021 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-34563127

RESUMO

BACKGROUND: Evolutionary processes can cause strong spatial genetic signatures, such as local loss of genetic diversity, or conflicting histories from mitochondrial versus nuclear markers. Investigating these genetic patterns is important, as they may reveal obscured processes and players. The maternally inherited bacterium Wolbachia is among the most widespread symbionts in insects. Wolbachia typically spreads within host species by conferring direct fitness benefits, and/or by manipulating its host reproduction to favour infected over uninfected females. Under sufficient selective advantage, the mitochondrial haplotype associated with the favoured maternally-inherited symbiotic strains will spread (i.e. hitchhike), resulting in low mitochondrial genetic variation across the host species range. METHOD: The common bluetail damselfly (Ischnura elegans: van der Linden, 1820) has recently emerged as a model organism for genetics and genomic signatures of range expansion during climate change. Although there is accumulating data on the consequences of such expansion on the genetics of I. elegans, no study has screened for Wolbachia in the damselfly genus Ischnura. Here, we present the biogeographic variation in Wolbachia prevalence and penetrance across Europe and Japan (including samples from 17 populations), and from close relatives in the Mediterranean area (i.e. I. genei: Rambur, 1842; and I. saharensis: Aguesse, 1958). RESULTS: Our data reveal (a) multiple Wolbachia-strains, (b) potential transfer of the symbiont through hybridization, (c) higher infection rates at higher latitudes, and (d) reduced mitochondrial diversity in the north-west populations, indicative of hitchhiking associated with the selective sweep of the most common strain. We found low mitochondrial haplotype diversity in the Wolbachia-infected north-western European populations (Sweden, Scotland, the Netherlands, Belgium, France and Italy) of I. elegans, and, conversely, higher mitochondrial diversity in populations with low penetrance of Wolbachia (Ukraine, Greece, Montenegro and Cyprus). The timing of the selective sweep associated with infected lineages was estimated between 20,000 and 44,000 years before present, which is consistent with the end of the last glacial period about 20,000 years. CONCLUSIONS: Our findings provide an example of how endosymbiont infections can shape spatial variation in their host evolutionary genetics during postglacial expansion. These results also challenge population genetic studies that do not consider the prevalence of symbionts in many insects, which we show can impact geographic patterns of mitochondrial genetic diversity.


Assuntos
DNA Mitocondrial , Odonatos/genética , Odonatos/microbiologia , Wolbachia , Animais , Chipre , DNA Mitocondrial/genética , Feminino , Variação Genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa