Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(3): 607-620.e17, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36640762

RESUMO

Tissue immunity and responses to injury depend on the coordinated action and communication among physiological systems. Here, we show that, upon injury, adaptive responses to the microbiota directly promote sensory neuron regeneration. At homeostasis, tissue-resident commensal-specific T cells colocalize with sensory nerve fibers within the dermis, express a transcriptional program associated with neuronal interaction and repair, and promote axon growth and local nerve regeneration following injury. Mechanistically, our data reveal that the cytokine interleukin-17A (IL-17A) released by commensal-specific Th17 cells upon injury directly signals to sensory neurons via IL-17 receptor A, the transcription of which is specifically upregulated in injured neurons. Collectively, our work reveals that in the context of tissue damage, preemptive immunity to the microbiota can rapidly bridge biological systems by directly promoting neuronal repair, while also identifying IL-17A as a major determinant of this fundamental process.


Assuntos
Interleucina-17 , Microbiota , Regeneração Nervosa , Células Th17 , Axônios , Regeneração Nervosa/fisiologia , Células Receptoras Sensoriais , Animais , Camundongos , Células Th17/citologia
2.
Cell ; 186(24): 5375-5393.e25, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37995657

RESUMO

Itch is an unpleasant sensation that evokes a desire to scratch. The skin barrier is constantly exposed to microbes and their products. However, the role of microbes in itch generation is unknown. Here, we show that Staphylococcus aureus, a bacterial pathogen associated with itchy skin diseases, directly activates pruriceptor sensory neurons to drive itch. Epicutaneous S. aureus exposure causes robust itch and scratch-induced damage. By testing multiple isogenic bacterial mutants for virulence factors, we identify the S. aureus serine protease V8 as a critical mediator in evoking spontaneous itch and alloknesis. V8 cleaves proteinase-activated receptor 1 (PAR1) on mouse and human sensory neurons. Targeting PAR1 through genetic deficiency, small interfering RNA (siRNA) knockdown, or pharmacological blockade decreases itch and skin damage caused by V8 and S. aureus exposure. Thus, we identify a mechanism of action for a pruritogenic bacterial factor and demonstrate the potential of inhibiting V8-PAR1 signaling to treat itch.


Assuntos
Peptídeo Hidrolases , Prurido , Receptor PAR-1 , Infecções Estafilocócicas , Staphylococcus aureus , Animais , Humanos , Camundongos , Peptídeo Hidrolases/metabolismo , Prurido/microbiologia , Receptor PAR-1/metabolismo , Staphylococcus aureus/enzimologia , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/fisiologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia
3.
Cell ; 185(22): 4190-4205.e25, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36243004

RESUMO

Neuroepithelial crosstalk is critical for gut physiology. However, the mechanisms by which sensory neurons communicate with epithelial cells to mediate gut barrier protection at homeostasis and during inflammation are not well understood. Here, we find that Nav1.8+CGRP+ nociceptor neurons are juxtaposed with and signal to intestinal goblet cells to drive mucus secretion and gut protection. Nociceptor ablation led to decreased mucus thickness and dysbiosis, while chemogenetic nociceptor activation or capsaicin treatment induced mucus growth. Mouse and human goblet cells expressed Ramp1, receptor for the neuropeptide CGRP. Nociceptors signal via the CGRP-Ramp1 pathway to induce rapid goblet cell emptying and mucus secretion. Notably, commensal microbes activated nociceptors to control homeostatic CGRP release. In the absence of nociceptors or epithelial Ramp1, mice showed increased epithelial stress and susceptibility to colitis. Conversely, CGRP administration protected nociceptor-ablated mice against colitis. Our findings demonstrate a neuron-goblet cell axis that orchestrates gut mucosal barrier protection.


Assuntos
Colite , Células Caliciformes , Camundongos , Humanos , Animais , Células Caliciformes/metabolismo , Nociceptores/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Colite/metabolismo , Muco/metabolismo , Proteína 1 Modificadora da Atividade de Receptores/metabolismo
4.
Immunity ; 57(4): 815-831, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599172

RESUMO

The sensory nervous system possesses the ability to integrate exogenous threats and endogenous signals to mediate downstream effector functions. Sensory neurons have been shown to activate or suppress host defense and immunity against pathogens, depending on the tissue and disease state. Through this lens, pro- and anti-inflammatory neuroimmune effector functions can be interpreted as evolutionary adaptations by host or pathogen. Here, we discuss recent and impactful examples of neuroimmune circuitry that regulate tissue homeostasis, autoinflammation, and host defense. Apparently paradoxical or conflicting reports in the literature also highlight the complexity of neuroimmune interactions that may depend on tissue- and microbe-specific cues. These findings expand our understanding of the nuanced mechanisms and the greater context of sensory neurons in innate immunity.


Assuntos
Imunidade Inata , Células Receptoras Sensoriais , Imunidade Inata/fisiologia , Neuroimunomodulação/fisiologia , Homeostase
5.
Nature ; 615(7952): 472-481, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36859544

RESUMO

The meninges are densely innervated by nociceptive sensory neurons that mediate pain and headache1,2. Bacterial meningitis causes life-threatening infections of the meninges and central nervous system, affecting more than 2.5 million people a year3-5. How pain and neuroimmune interactions impact meningeal antibacterial host defences are unclear. Here we show that Nav1.8+ nociceptors signal to immune cells in the meninges through the neuropeptide calcitonin gene-related peptide (CGRP) during infection. This neuroimmune axis inhibits host defences and exacerbates bacterial meningitis. Nociceptor neuron ablation reduced meningeal and brain invasion by two bacterial pathogens: Streptococcus pneumoniae and Streptococcus agalactiae. S. pneumoniae activated nociceptors through its pore-forming toxin pneumolysin to release CGRP from nerve terminals. CGRP acted through receptor activity modifying protein 1 (RAMP1) on meningeal macrophages to polarize their transcriptional responses, suppressing macrophage chemokine expression, neutrophil recruitment and dural antimicrobial defences. Macrophage-specific RAMP1 deficiency or pharmacological blockade of RAMP1 enhanced immune responses and bacterial clearance in the meninges and brain. Therefore, bacteria hijack CGRP-RAMP1 signalling in meningeal macrophages to facilitate brain invasion. Targeting this neuroimmune axis in the meninges can enhance host defences and potentially produce treatments for bacterial meningitis.


Assuntos
Encéfalo , Meninges , Meningites Bacterianas , Neuroimunomodulação , Humanos , Encéfalo/imunologia , Encéfalo/microbiologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Meninges/imunologia , Meninges/microbiologia , Meninges/fisiopatologia , Dor/etiologia , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Meningites Bacterianas/complicações , Meningites Bacterianas/imunologia , Meningites Bacterianas/microbiologia , Meningites Bacterianas/patologia , Streptococcus agalactiae/imunologia , Streptococcus agalactiae/patogenicidade , Streptococcus pneumoniae/imunologia , Streptococcus pneumoniae/patogenicidade , Nociceptores/metabolismo , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo
6.
EMBO J ; 40(7): e106103, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33522633

RESUMO

Streptococcus agalactiae, also known as group B Streptococcus (GBS), is the major cause of neonatal sepsis in humans. A critical step to infection is adhesion of bacteria to epithelial surfaces. GBS adhesins have been identified to bind extracellular matrix components and cellular receptors. However, several putative adhesins have no host binding partner characterised. We report here that surface-expressed ß protein of GBS binds to human CEACAM1 and CEACAM5 receptors. A crystal structure of the complex showed that an IgSF domain in ß represents a novel Ig-fold subtype called IgI3, in which unique features allow binding to CEACAM1. Bioinformatic assessment revealed that this newly identified IgI3 fold is not exclusively present in GBS but is predicted to be present in adhesins from other clinically important human pathogens. In agreement with this prediction, we found that CEACAM1 binds to an IgI3 domain found in an adhesin from a different streptococcal species. Overall, our results indicate that the IgI3 fold could provide a broadly applied mechanism for bacteria to target CEACAMs.


Assuntos
Adesinas Bacterianas/química , Antígenos CD/química , Antígeno Carcinoembrionário/química , Moléculas de Adesão Celular/química , Adesinas Bacterianas/metabolismo , Animais , Antígenos CD/metabolismo , Sítios de Ligação , Células CHO , Antígeno Carcinoembrionário/metabolismo , Moléculas de Adesão Celular/metabolismo , Cricetinae , Cricetulus , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/metabolismo , Células HeLa , Humanos , Ligação Proteica , Streptococcus agalactiae/metabolismo
7.
J Allergy Clin Immunol ; 153(5): 1344-1354.e5, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38336257

RESUMO

BACKGROUND: Atopic dermatitis skin lesions exhibit increased infiltration by basophils. Basophils produce IL-4, which plays an important role in the pathogenesis of atopic dermatitis. OBJECTIVE: We sought to determine the role of basophils in a mouse model of antigen-driven allergic skin inflammation. METHODS: Wild-type mice, mice with selective and inducible depletion of basophils, and mice expressing Il4-driven enhanced green fluorescent protein were subjected to epicutaneous sensitization with ovalbumin or saline. Sensitized skin was examined by histology for epidermal thickening. Cells were analyzed for surface markers and intracellular expression of enhanced green fluorescent protein by flow cytometry. Gene expression was evaluated by real-time reverse transcription-quantitative PCR. RESULTS: Basophils were important for epidermal hyperplasia, dermal infiltration by CD4+ T cells, mast cells, and eosinophils in ovalbumin-sensitized mouse skin and for the local and systemic TH2 response to epicutaneous sensitization. Moreover, basophils were the major source of IL-4 in epicutaneous-sensitized mouse skin and promote the ability of dendritic cells to drive TH2 polarization of naive T cells. CONCLUSION: Basophils play an important role in the development of allergic skin inflammation induced by cutaneous exposure to antigen in mice.


Assuntos
Basófilos , Dermatite Atópica , Interleucina-4 , Ovalbumina , Células Th2 , Animais , Basófilos/imunologia , Camundongos , Interleucina-4/imunologia , Interleucina-4/genética , Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Ovalbumina/imunologia , Células Th2/imunologia , Pele/imunologia , Pele/patologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças , Células Dendríticas/imunologia , Camundongos Transgênicos , Mastócitos/imunologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-38958673

RESUMO

OBJECTIVE: This population-based study explored emergency room visits (ERVs) from all-causes, circulatory and respiratory diseases among different occupational groups in Taiwan associated with ambient average temperature. METHOD: Daily area-age-sex specific ERVs records were obtained from the Taiwan's Ministry of Health and Welfare from 2009 to 2018. Distributed lag-nonlinear model (DLNM) was used to estimate the exposure-response relationships between daily average temperature and ERVs for all-causes, circulatory and respiratory diseases by occupational groups. Random-effects meta-analysis was used to pool the overall cumulative relative risk (RR) and 95% confidence interval (CI). RESULTS: The exposure-response curves showed ERVs of all-cause and respiratory diseases increased with rising temperature across all occupational groups. These effects were consistently stronger among younger (20-64 years old) and outdoor workers. In contrast, ERVs risk from circulatory diseases increased significantly during cold snaps, with a substantially higher risk for female workers. Interestingly, female workers, regardless of indoor or outdoor work, consistently showed a higher risk of respiratory ERVs during hot weather compared to males. Younger workers (20-64 years old) exhibited a higher risk of ERVs, likely due to job profiles with greater exposure to extreme temperatures. Notably, the highest risk of all-causes ERVs was observed in outdoor male laborers (union members), followed by farmers and private employees, with the lowest risk among indoor workers. Conversely, female indoor workers and female farmers faced the highest risk of respiratory ERVs. Again, female farmers with consistent outdoor exposure had the highest risk of circulatory ERVs during cold conditions. CONCLUSION: Our findings highlighted the complexity of temperature-related health risks associated with different occupational contexts. The population-level insights into vulnerable occupational groups could provide valuable comprehension for policymakers and healthcare practitioners.

9.
Opt Lett ; 48(21): 5643-5646, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910723

RESUMO

Mini-LED backlights energized by quantum-dot color conversion (QDCC) hold great potential for technological breakthroughs of liquid crystal displays. However, luminance uniformity issues should still be urgently solved owing to the large interval of direct-lit mini-LEDs, especially when covering with a QDCC film (QDCCF) with uniform thickness. Herein, we propose a uniformity improvement approach of mini-LED backlights by employing a QDCCF with nonuniform thickness based on the Lambertian distribution of mini-LEDs, which is demonstrated by screen-printing preparation and ray-tracing simulation. Experimental results show that the luminance uniformity of the nonuniform QDCCF can reach 89.91%, which is 24.92% higher than the uniform one. Ray-tracing simulation further elaborates the mechanism of this significant improvement. Finally, by employing this nonuniform QDCCF, a mini-LED backlight prototype is assembled and achieves high uniformity of 92.15%, good white balance with color coordinates of (0.3482, 0.3137), and high color gamut of 109% NTSC. This work should shed some new light on mini-LED-based display technology.

10.
PLoS Pathog ; 15(6): e1007848, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31181121

RESUMO

Streptococcus agalactiae (Group B Streptococcus, GBS) normally colonizes healthy adults but can cause invasive disease, such as meningitis, in the newborn. To gain access to the central nervous system, GBS must interact with and penetrate brain or meningeal blood vessels; however, the exact mechanisms are still being elucidated. Here, we investigate the contribution of BspC, an antigen I/II family adhesin, to the pathogenesis of GBS meningitis. Disruption of the bspC gene reduced GBS adherence to human cerebral microvascular endothelial cells (hCMEC), while heterologous expression of BspC in non-adherent Lactococcus lactis conferred bacterial attachment. In a murine model of hematogenous meningitis, mice infected with ΔbspC mutants exhibited lower mortality as well as decreased brain bacterial counts and inflammatory infiltrate compared to mice infected with WT GBS strains. Further, BspC was both necessary and sufficient to induce neutrophil chemokine expression. We determined that BspC interacts with the host cytoskeleton component vimentin and confirmed this interaction using a bacterial two-hybrid assay, microscale thermophoresis, immunofluorescent staining, and imaging flow cytometry. Vimentin null mice were protected from WT GBS infection and also exhibited less inflammatory cytokine production in brain tissue. These results suggest that BspC and the vimentin interaction is critical for the pathogenesis of GBS meningitis.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Encéfalo/metabolismo , Meningites Bacterianas/metabolismo , Infecções Estreptocócicas/metabolismo , Streptococcus agalactiae/metabolismo , Vimentina/metabolismo , Animais , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Encéfalo/irrigação sanguínea , Encéfalo/microbiologia , Encéfalo/patologia , Endotélio Vascular , Células HeLa , Humanos , Masculino , Meningites Bacterianas/genética , Meningites Bacterianas/patologia , Camundongos , Camundongos Mutantes , Ovinos , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/patologia , Streptococcus agalactiae/genética , Streptococcus agalactiae/patogenicidade , Vimentina/genética
11.
Cancer Cell Int ; 21(1): 706, 2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-34953496

RESUMO

BACKGROUND: Osteosarcoma is the most common primary bone tumor in children and adolescents. However, some patients with osteosarcoma develop resistance to chemotherapy, leading to a poor clinical prognosis. Hence, effective therapeutic agents that can improve the response to chemotherapy drugs to improve the prognosis of patients with osteosarcoma are urgently needed. Cordycepin has recently emerged as a promising antitumor drug candidate. This study aims to explore the effect of cordycepin in suppressing osteosarcoma in vivo and in vitro and the synergistic effect of cordycepin combined with cisplatin and to demonstrate the underlying molecular mechanism. METHODS: CCK-8 assay was performed to investigate the inhibition effect of cordycepin combined with cisplatin in osteosarcoma cell lines. The colony formation and invasion abilities were measured by colony formation assay and Transwell assay. Osteosarcoma cells apoptosis was detected by flow cytometry. Western blot analysis were used to detect the expression of cell apoptosis-related proteins and AMPK and AKT/mTOR signaling pathway-related proteins. Finally, we performed the in vivo animal model to further explore whether cordycepin and cisplatin exert synergistic antitumor effects. RESULTS: Notably, we found that treatment with cordycepin inhibited cell proliferation, invasion, and induced apoptosis in osteosarcoma cells in vitro and in vivo. Moreover, the combination of cordycepin and cisplatin led to marked inhibition of osteosarcoma cell proliferation and invasion and promoted osteosarcoma cell apoptosis in vitro and in vivo. Mechanistically, we demonstrated that cordycepin enhanced the sensitivity of osteosarcoma cells to cisplatin by activating AMPK and inhibiting the AKT/mTOR signaling pathway. CONCLUSIONS: In brief, this study provides comprehensive evidence that cordycepin inhibits osteosarcoma cell growth and invasion and induces osteosarcoma cell apoptosis by activating AMPK and inhibiting the AKT/mTOR signaling pathway and enhances the sensitivity of osteosarcoma cells to cisplatin, suggesting that cordycepin is a promising treatment for osteosarcoma.

12.
EMBO J ; 34(22): 2775-88, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26459514

RESUMO

The intracellular chaperone heat-shock protein 70 (Hsp70) can be secreted from cells, but its extracellular role is unclear, as the protein has been reported to both activate and suppress the innate immune response. Potential immunomodulatory receptors on myelomonocytic lineage cells that bind extracellular Hsp70 are not well defined. Siglecs are Ig-superfamily lectins on mammalian leukocytes that recognize sialic acid-bearing glycans and thereby modulate immune responses. Siglec-5 and Siglec-14, expressed on monocytes and neutrophils, share identical ligand-binding domains but have opposing signaling functions. Based on phylogenetic analyses of these receptors, we predicted that endogenous sialic acid-independent ligands should exist. An unbiased screen revealed Hsp70 as a ligand for Siglec-5 and Siglec-14. Hsp70 stimulation through Siglec-5 delivers an anti-inflammatory signal, while stimulation through Siglec-14 is pro-inflammatory. The functional consequences of this interaction are also addressed in relation to a SIGLEC14 polymorphism found in humans. Our results demonstrate that an endogenous non-sialic acid-bearing molecule can be either a danger-associated or self-associated signal through paired Siglecs, and may explain seemingly contradictory prior reports on extracellular Hsp70 action.


Assuntos
Antígenos CD/imunologia , Antígenos de Diferenciação Mielomonocítica/imunologia , Proteínas de Choque Térmico HSP70/imunologia , Lectinas/imunologia , Monócitos/imunologia , Receptores de Superfície Celular/imunologia , Transdução de Sinais/imunologia , Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/genética , Linhagem Celular Tumoral , Células HEK293 , Proteínas de Choque Térmico HSP70/genética , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Lectinas/genética , Monócitos/patologia , Receptores de Superfície Celular/genética , Transdução de Sinais/genética
13.
J Pathol ; 246(3): 366-378, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30043491

RESUMO

Non-small-cell lung cancer (NSCLC), in which the NF-κB pathway is constitutively activated, is one of the most common malignancies. Herein, we identify an E3 ubiquitin ligase, tripartite motif-containing 37 (TRIM37), participating in the K63 polyubiquitination of TRAF2, which is a significant step in the activation of NF-κB signaling. Both the mRNA and the protein expression levels of TRIM37 were much higher in NSCLC cell lines and tissues than in normal bronchial epithelial cells and matched adjacent non-tumor tissues. TRIM37 expression correlated closely with clinical stage and poor survival in NSCLC. Overexpression of TRIM37 antagonized cisplatin-induced apoptosis, induced angiogenesis and proliferation, and increased the aggressiveness of NSCLC cells in vitro and in vivo, whereas inhibition of TRIM37 led to the opposite effects. Gene set enrichment analysis (GSEA) showed that TRIM37 expression significantly correlated with NF-κB signaling. Furthermore, we found that TRIM37 bound to TRAF2 and promoted K63-linked ubiquitination of TRAF2, sustaining the eventual activation of the NF-κB pathway. Mutation in the ring finger domain of TRIM37, a hallmark of E3 ubiquitin ligases, led to loss of the ability to promote K63 polyubiquitination of TRAF2 and activate NF-κB signaling. Taken together, our findings provide evidence that TRIM37 plays an important role in constitutive NF-κB pathway activation and could serve as a prognostic factor and therapeutic target in NSCLC. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/enzimologia , Neoplasias Pulmonares/enzimologia , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Fator 2 Associado a Receptor de TNF/metabolismo , Células A549 , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , NF-kappa B/genética , Proteínas Nucleares/genética , Fosforilação , Transdução de Sinais , Fator 2 Associado a Receptor de TNF/genética , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Ubiquitinação , Regulação para Cima
14.
Infect Immun ; 86(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29685987

RESUMO

Streptococcus agalactiae (group B Streptococcus [GBS]) is often a commensal bacterium that colonizes healthy adults asymptomatically and is a frequent inhabitant of the vaginal tract in women. However, in immunocompromised individuals, particularly the newborn, GBS may transition to an invasive pathogen and cause serious disease. Despite the use of the currently recommended intrapartum antibiotic prophylaxis for GBS-positive mothers, GBS remains a leading cause of neonatal septicemia and meningitis. To adapt to the various host environments encountered during its disease cycle, GBS possesses multiple two-component regulatory systems (TCSs). Here we investigated the contribution of a transcriptional regulator containing a LytTR domain, LtdR, to GBS pathogenesis. Disruption of the ltdR gene in the GBS chromosome resulted in a significant increase in bacterial invasion into human cerebral microvascular endothelial cells (hCMEC) in vitro as well as the greater penetration of the blood-brain barrier (BBB) and the development of meningitis in vivo Correspondingly, infection of hCMEC with the ΔltdR mutant resulted in increased secretion of the proinflammatory cytokines interleukin-8 (IL-8), CXCL-1, and IL-6. Further, using a mouse model of GBS vaginal colonization, we observed that the ΔltdR mutant was cleared more readily from the vaginal tract and also that infection with the ΔltdR mutant resulted in increased cytokine production from human vaginal epithelial cells. RNA sequencing revealed global transcriptional differences between the ΔltdR mutant and the parental wild-type GBS strain. These results suggest that LtdR regulates many bacterial processes that can influence GBS-host interactions to promote both bacterial persistence and disease progression.


Assuntos
Infecções Estreptocócicas/genética , Infecções Estreptocócicas/fisiopatologia , Ativação Transcricional/genética , Ativação Transcricional/fisiologia , Virulência/genética , Virulência/fisiologia , Animais , Regulação Bacteriana da Expressão Gênica , Humanos , Camundongos
16.
Cell Commun Signal ; 16(1): 28, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29891006

RESUMO

BACKGROUND: SOD1 is an abundant enzyme that has been studied as a regulator of the antioxidant defence system, and this enzyme is well known for catalyzing the dismutation of superoxide into hydrogen peroxide. However the SOD1 in the progress of NPC and underlying mechanisms remain unclear. METHODS: In NPC tissue samples, SOD1 protein levels were measured by Western blot and immunohistochemical (IHC) staining. mRNA levels and SOD1 activity were monitored by qRT-PCR and SOD activity kit, respectively. Kaplan-Meier survival analysis was performed to explore the relationship between SOD1 expression and prognosis of NPC. The biological effects of SOD1 were investigated both in vitro by CCK-8, clonogenicity and apoptosis assays and in vivo by a xenograft mice model. Western blotting, ROS assay and triglyceride assays were applied to investigate the underlying molecular mechanism of pro-survival role of SOD1 in NPC. RESULTS: We observed a significant upregulation of SOD1 in NPC tissue and high SOD1 expression is a predictor of poor prognosis and is correlated with poor outcome. We confirmed the pro-survival role of SOD1 both in vitro and in vivo. We demonstrated that these mechanisms of SOD1 partly exist to maintain low levels of the superoxide anion and to avoid the accumulation of lipid droplets via enhanced CPT1A-mediated fatty acid oxidation. CONCLUSIONS: The results of this study indicate that SOD1 is a potential prognostic biomarker and a promising target for NPC therapy.


Assuntos
Metabolismo dos Lipídeos , Carcinoma Nasofaríngeo/patologia , Superóxido Dismutase-1/metabolismo , Animais , Apoptose , Carnitina O-Palmitoiltransferase/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Feminino , Técnicas de Silenciamento de Genes , Humanos , Estimativa de Kaplan-Meier , Camundongos , Carcinoma Nasofaríngeo/diagnóstico , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Prognóstico , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase-1/deficiência , Superóxido Dismutase-1/genética
17.
J Biol Chem ; 291(35): 18222-31, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27382056

RESUMO

Humans can incorporate the xenoglycan N-glycolylneuraminic acid (Neu5Gc) from the diet into reproductive tissues and secretions. Most humans also have circulating antibodies specific for this dietary xenoglycan. The potential for inflammation induced by incorporated Neu5Gc and circulating anti-Neu5Gc antibodies, termed xenosialitis, has been discussed as a factor influencing several human diseases. Potential effects of xenosialitis on human fertility remain unknown. Here, we investigate possible adverse effects of the presence of Neu5Gc on sperm or endometrium combined with anti-Neu5Gc antibodies in semen or uterine secretions in a mouse model. We use Cmah(-/-) mice, humanized for Neu5Gc deficiency. We find that the viability, migration, and capacitation of sperm with incorporated Neu5Gc are negatively affected when these are exposed to anti-Neu5Gc antibodies. In addition, we find that after copulation, activated uterine neutrophils and macrophages show increased phagocytosis of sperm in the presence of anti-Neu5Gc antibodies via the complement receptor 3 (C3R) and Fcγ I/II/III (Fc receptor). Furthermore, Neu5Gc in endometrial cells combined with the presence of anti-Neu5Gc antibodies alters the receptivity and decidualization of endometrial explants. These studies provide mechanistic insights on how Neu5Gc on sperm and/or endometrium combined with anti-Neu5Gc antibodies in semen and uterine fluid might contribute to unexplained human infertility.


Assuntos
Ácidos Neuramínicos/efeitos adversos , Sialadenite , Animais , Modelos Animais de Doenças , Endométrio/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Ácidos Neuramínicos/farmacologia , Receptores de Complemento/genética , Receptores de Complemento/metabolismo , Receptores Fc/genética , Receptores Fc/metabolismo , Sialadenite/induzido quimicamente , Sialadenite/enzimologia , Sialadenite/genética , Espermatozoides/metabolismo
18.
Glycobiology ; 27(5): 385-391, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28115423

RESUMO

Selectins are a family of calcium-dependent, type I transmembrane, carbohydrate-binding glycoproteins. Selectins and their ligands are not only involved in physiological processes such as leukocyte homing and pathological processes such as cancer, but also play an essential role in the human implantation. L-selectin and its ligands participate in the adhesion of the blastocyst to the endometrium at the maternal-fetal interface. P-selectin and E-selectin are involved in immune recognition of maternal decidua to the embedded embryo as well as trophoblast migration within decidual spiral arterioles. Moreover, altered expression of selectins and their ligands are found to be associated with some abnormal pregnancies and infertilities. This review focuses on the current progress of research on the role of selectins and their ligands in the human implantation process.


Assuntos
Implantação do Embrião/genética , Selectinas/metabolismo , Trofoblastos/metabolismo , Decídua/crescimento & desenvolvimento , Decídua/metabolismo , Endométrio/crescimento & desenvolvimento , Endométrio/metabolismo , Feminino , Humanos , Ligantes , Masculino , Gravidez , Selectinas/genética
19.
Proc Natl Acad Sci U S A ; 111(39): 14211-6, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25225409

RESUMO

Certain pathogenic bacteria are known to modulate the innate immune response by decorating themselves with sialic acids, which can engage the myelomonocytic lineage inhibitory receptor Siglec-9, thereby evading immunosurveillance. We hypothesized that the well-known up-regulation of sialoglycoconjugates by tumors might similarly modulate interactions with innate immune cells. Supporting this hypothesis, Siglec-9-expressing myelomonocytic cells found in human tumor samples were accompanied by a strong up-regulation of Siglec-9 ligands. Blockade of Siglec-9 enhanced neutrophil activity against tumor cells in vitro. To investigate the function of inhibitory myelomonocytic Siglecs in vivo we studied mouse Siglec-E, the murine functional equivalent of Siglec-9. Siglec-E-deficient mice showed increased in vivo killing of tumor cells, and this effect was reversed by transgenic Siglec-9 expression in myelomonocytic cells. Siglec-E-deficient mice also showed enhanced immunosurveillance of autologous tumors. However, once tumors were established, they grew faster in Siglec-E-deficient mice. In keeping with this, Siglec-E-deficient macrophages showed a propensity toward a tumor-promoting M2 polarization, indicating a secondary role of CD33-related Siglecs in limiting cancer-promoting inflammation and tumor growth. Thus, we define a previously unidentified impact of inhibitory myelomonocytic Siglecs in cancer biology, with distinct roles that reflect the dual function of myelomonocytic cells in cancer progression. In keeping with this, a human polymorphism that reduced Siglec-9 binding to carcinomas was associated with improved early survival in non-small-cell lung cancer patients, which suggests that Siglec-9 might be therapeutically targeted within the right time frame and stage of disease.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos B/metabolismo , Imunidade Inata , Neoplasias/imunologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Animais , Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos B/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Ligantes , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Monócitos/imunologia , Ativação de Neutrófilo , Polimorfismo de Nucleotídeo Único , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Microambiente Tumoral/imunologia
20.
Zhonghua Nan Ke Xue ; 23(1): 65-68, 2017 Jan.
Artigo em Zh | MEDLINE | ID: mdl-29658240

RESUMO

OBJECTIVE: To explore the relationship between the clinical and genetic features of a short-statured azoospermia male with the karyotype of 45,X. METHODS: Using GTG-banded chromosome analysis, we performed karyotyping for a 150 cm-high infertile male with azoospermia and investigated the presence and location of the genes on the Y chromosome by FISH and PCR. RESULTS: GTG-banded chromosome analysis showed the karyotype of the patient to be 45,X,add(14)(p11). The results of PCR manifested the deletion of AZFa, AZFb, AZFc, and AZFd in the SRY gene. FISH revealed the translocation of the short arm of the Y chromosome to that of chromosome 14 and deletion of most proportions of its long arm, with the disruption site close to the centromere region. The karyotype of the patient was 45,X,der(Y)t(Y;14)(q11;q11.2), 14.ish (SRY+, CEP Y+ , DYZ1-). CONCLUSIONS: The karyotype of the patient was unbalanced Y/14 translocation. The SRY gene is the key to maleness. The deletion of AZFa- d induces spermatogenic disturbance, and the deletion of the q arm of the Y chromosome may be related with short stature.


Assuntos
Cromossomos Humanos Par 14/genética , Cromossomos Humanos Y/genética , Disgenesia Gonadal/genética , Infertilidade Masculina/genética , Cariotipagem/métodos , Fatores de Transcrição SOXB1/genética , Translocação Genética/genética , Azoospermia/genética , Bandeamento Cromossômico , Deleção Cromossômica , Humanos , Masculino , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa