Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992874

RESUMO

Pyroptosis is one special type of lytic programmed cell death, featured in cell swelling, rupture, secretion of cell contents and remarkable proinflammation effect. In the process of pyroptosis, danger signalling and cellular events are detected by inflammasome, activating caspases and cleaving Gasdermin D (GSDMD), along with the secretion of IL-18 and IL-1ß. Pyroptosis can be divided into canonical pathway and non-canonical pathway, and NLRP3 inflammasome is the most important initiator. Diabetic kidney disease (DKD) is one of the most serious microvascular complications in diabetes. Current evidence reported the stimulatory role of hyperglycaemia-induced cellular stress in renal cell pyroptosis, and different signalling pathways have been shown to regulate pyroptosis initiation. Additionally, the inflammation and cellular injury caused by pyroptosis are tightly implicated in DKD progression, aggravating renal fibrosis, glomerular sclerosis and tubular injury. Some registered hypoglycaemia agents exert suppressive activity in pyroptosis regulation pathway. Latest studies also reported some potential approaches to target the pyroptosis pathway, which effectively inhibits renal cell pyroptosis and alleviates DKD in in vivo or in vitro models. Therefore, comprehensively compiling the information associated with pyroptosis regulation in DKD is the main aim of this review, and we try to provide new insights for researchers to dig out more potential therapies of DKD.


Assuntos
Nefropatias Diabéticas , Rim , Piroptose , Animais , Caspases/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Fibrose , Humanos , Inflamassomos/metabolismo , Rim/metabolismo , Rim/patologia
2.
J Pharmacol Exp Ther ; 366(2): 291-302, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29752426

RESUMO

Follistatin (FS) is an important regulatory protein, a natural antagonist for transforming growth factor-ß family members activin and myostatin. The diverse biologic roles of the activin and myostatin signaling pathways make FS a promising therapeutic target for treating human diseases exhibiting inflammation, fibrosis, and muscle disorders, such as Duchenne muscular dystrophy. However, rapid heparin-mediated hepatic clearance of FS limits its therapeutic potential. We targeted the heparin-binding loop of FS for site-directed mutagenesis to improve clearance parameters. By generating a series of FS variants with one, two, or three negative amino acid substitutions, we demonstrated a direct and proportional relationship between the degree of heparin-binding affinity in vitro and the exposure in vivo. The triple mutation K(76,81,82)E abolished heparin-binding affinity, resulting in ∼20-fold improved in vivo exposure. This triple mutant retains full functional activity and an antibody-like pharmacokinetic profile, and shows a superior developability profile in physical stability and cell productivity compared with FS variants, which substitute the entire heparin-binding loop with alternative sequences. Our surgical approach to mutagenesis should also reduce the immunogenicity risk. To further lower this risk, we introduced a novel glycosylation site into the heparin-binding loop. This hyperglycosylated variant showed a 10-fold improved exposure and decreased clearance in mice compared with an IgG1 Fc fusion protein containing the native FS sequence. Collectively, our data highlight the importance of improving pharmacokinetic properties by manipulating heparin-binding affinity and glycosylation content and provide a valuable guideline to design desirable therapeutic FS molecules.


Assuntos
Folistatina/genética , Folistatina/farmacocinética , Engenharia de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacocinética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Feminino , Folistatina/metabolismo , Folistatina/uso terapêutico , Glicosilação , Heparina/metabolismo , Humanos , Camundongos , Mutação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapêutico , Distribuição Tecidual
3.
Neural Regen Res ; 19(12): 2661-2672, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38595285

RESUMO

The glymphatic system is a relatively recently identified fluid exchange and transport system in the brain. Accumulating evidence indicates that glymphatic function is impaired not only in central nervous system disorders but also in systemic diseases. Systemic diseases can trigger the inflammatory responses in the central nervous system, occasionally leading to sustained inflammation and functional disturbance of the central nervous system. This review summarizes the current knowledge on the association between glymphatic dysfunction and central nervous system inflammation. In addition, we discuss the hypothesis that disease conditions initially associated with peripheral inflammation overwhelm the performance of the glymphatic system, thereby triggering central nervous system dysfunction, chronic neuroinflammation, and neurodegeneration. Future research investigating the role of the glymphatic system in neuroinflammation may offer innovative therapeutic approaches for central nervous system disorders.

4.
Adv Sci (Weinh) ; 11(11): e2302916, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38195869

RESUMO

Astrocyte swelling is implicated in various neurological disorders. However, whether astrocyte swelling contributes to neuropathic pain remains elusive. This study elucidates the pivotal role of the nuclear factor of activated T-cells 5 (NFAT5) emerges as a master regulator of astrocyte swelling in the spinal dorsal horn (SDH) during neuropathic pain. Despite the ubiquitous expression of NFAT5 protein in SDH cell types, it selectively induces swelling specifically in astrocytes, not in microglia. Mechanistically, NFAT5 directly controls the expression of the water channel aquaporin-4 (AQP4), a key regulator exclusive to astrocytes. Additionally, aurora kinase B (AURKB) orchestrates NFAT5 phosphorylation, enhancing its protein stability and nuclear translocation, thereby regulating AQP4 expression. The findings establish NFAT5 as a crucial regulator for neuropathic pain through the modulation of astrocyte swelling. The AURKB-NFAT5-AQP4 pathway in astrocytes emerges as a potential therapeutic target to combat neuropathic pain.


Assuntos
Astrócitos , Neuralgia , Humanos , Astrócitos/metabolismo , Microglia/metabolismo , Fosforilação , Neuralgia/metabolismo , Fatores de Transcrição/metabolismo
5.
Front Immunol ; 12: 654540, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093544

RESUMO

Dendritic cells (DCs) induce and regulate adaptive immunity through migrating and maturing in the kidney. In this procedure, they can adopt different phenotypes-rejection-associated DCs promote acute or chronic injury renal grafts while tolerogenic DCs suppress the overwhelmed inflammation preventing damage to renal functionality. All the subsets interact with effector T cells and regulatory T cells (Tregs) stimulated by the ischemia-reperfusion procedure, although the classification corresponding to different effects remains controversial. Thus, in this review, we discuss the origin, maturation, and pathological effects of DCs in the kidney. Then we summarize the roles of divergent DCs in renal transplantation: taking both positive and negative stages in ischemia-reperfusion injury (IRI), switching phenotypes to induce acute or chronic rejection, and orchestrating surface markers for allograft tolerance via alterations in metabolism. In conclusion, we prospect that multidimensional transcriptomic analysis will revolute researches on renal transplantation by addressing the elusive mononuclear phagocyte classification and providing a holistic view of DC ontogeny and subpopulations.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Transplante de Rim , Imunologia de Transplantes , Doença Aguda , Aloenxertos , Animais , Doença Crônica , Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto/imunologia , Humanos , Tolerância Imunológica , Imunomodulação , Imunoterapia , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo
6.
Skelet Muscle ; 8(1): 34, 2018 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-30368252

RESUMO

BACKGROUND: Myostatin antagonists are being developed as therapies for Duchenne muscular dystrophy due to their strong hypertrophic effects on skeletal muscle. Engineered follistatin has the potential to combine the hypertrophy of myostatin antagonism with the anti-inflammatory and anti-fibrotic effects of activin A antagonism. METHODS: Engineered follistatin was administered to C57BL/6 mice for 4 weeks, and muscle mass and myofiber size was measured. In the mdx model, engineered follistatin was dosed for 12 weeks in two studies comparing to an Fc fusion of the activin IIB receptor or an anti-myostatin antibody. Functional measurements of grip strength and tetanic force were combined with tissue analysis for markers of necrosis, inflammation, and fibrosis to evaluate improvement in dystrophic pathology. RESULTS: In wild-type and mdx mice, dose-dependent increases in muscle mass and quadriceps myofiber size were observed for engineered follistatin. In mdx, increases in grip strength and tetanic force were combined with improvements in muscle markers for necrosis, inflammation, and fibrosis. Improvements in dystrophic pathology were greater for engineered follistatin than the anti-myostatin antibody. CONCLUSIONS: Engineered follistatin generated hypertrophy and anti-fibrotic effects in the mdx model.


Assuntos
Ativinas/antagonistas & inibidores , Folistatina/uso terapêutico , Distrofias Musculares/tratamento farmacológico , Miostatina/antagonistas & inibidores , Animais , Folistatina/administração & dosagem , Força da Mão , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Contração Muscular , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/uso terapêutico
7.
J Neurosci ; 25(50): 11531-41, 2005 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-16354911

RESUMO

Pyramidal neurons of the electrosensory lateral line lobe (ELL) of Apteronotus leptorhynchus express Kv3-type voltage-gated potassium channels that give rise to high-threshold currents at the somatic and dendritic levels. Two members of the Kv3 channel family, AptKv3.1 and AptKv3.3, are coexpressed in these neurons. AptKv3.3 channels are expressed at uniformly high levels in each of four ELL segments, whereas AptKv3.1 channels appear to be expressed in a graded manner with higher levels of expression in segments that process high-frequency electrosensory signals. Immunohistochemical and recombinant channel expression studies show a differential distribution of these two channels in the dendrites of ELL pyramidal neurons. AptKv3.1 is concentrated in somas and proximal dendrites, whereas AptKv3.3 is distributed throughout the full extent of the large dendritic tree. Recombinant channel expression of AptKv3 channels through in vivo viral injections allowed directed retargeting of AptKv3 subtypes over the somadendritic axis, revealing that the sequence responsible for targeting channels to distal dendrites lies within the C-terminal domain of the AptKv3.3 protein. The targeting domain includes a consensus sequence predicted to bind to a PDZ (postsynaptic density-95/Discs large/zona occludens-1)-type protein-protein interaction motif. These findings reveal that different functional roles for Kv3 potassium channels at the somatic and dendritic level of a sensory neuron are attained through specific targeting that selectively distributes Kv3.3 channels to the dendritic compartment.


Assuntos
Dendritos/fisiologia , Proteínas de Peixes/fisiologia , Neurônios Aferentes/fisiologia , Fragmentos de Peptídeos/fisiologia , Canais de Potássio Shaw/fisiologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Cricetinae , Dendritos/genética , Drosophila , Proteínas de Peixes/biossíntese , Proteínas de Peixes/genética , Gimnotiformes , Camundongos , Dados de Sequência Molecular , Neurônios Aferentes/metabolismo , Fragmentos de Peptídeos/biossíntese , Fragmentos de Peptídeos/genética , Estrutura Terciária de Proteína/genética , Ratos , Canais de Potássio Shaw/biossíntese , Canais de Potássio Shaw/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa