Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 23(1): 68, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35164674

RESUMO

BACKGROUND: Generating chromosome-scale haplotype resolved assembly is important for functional studies. However, current de novo assemblers are either haploid assemblers that discard allelic information, or diploid assemblers that can only tackle genomes of low complexity. RESULTS: Here, Using robust programs, we build a diploid genome assembly pipeline called gcaPDA (gamete cells assisted Phased Diploid Assembler), which exploits haploid gamete cells to assist in resolving haplotypes. We demonstrate the effectiveness of gcaPDA based on simulated HiFi reads of maize genome which is highly heterozygous and repetitive, and real data from rice. CONCLUSIONS: With applicability of coping with complex genomes and fewer restrictions on application than most of diploid assemblers, gcaPDA is likely to find broad applications in studies of eukaryotic genomes.


Assuntos
Cromossomos , Diploide , Alelos , Haploidia , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA
2.
Proc Natl Acad Sci U S A ; 114(44): E9413-E9422, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29078332

RESUMO

Here we present the genome sequence and annotation of the wild olive tree (Olea europaea var. sylvestris), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at ∼28 and ∼59 Mya. These events contributed to the expansion and neofunctionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as FAD2, SACPD, EAR, and ACPTE, following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive compared with sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression. Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2, 3, 5, and 7, consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics.


Assuntos
Vias Biossintéticas/genética , Genoma de Planta/genética , Óleos/metabolismo , Olea/genética , Evolução Biológica , Ácidos Graxos Dessaturases/genética , Expressão Gênica/genética , Ácidos Linoleicos/genética , Olea/metabolismo , Ácido Oleico/genética , RNA Interferente Pequeno/genética
3.
Plant Commun ; : 100891, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561965

RESUMO

Plants that grow in extreme environments represent unique sources of stress-resistance genes and mechanisms. Ammopiptanthus mongolicus (Leguminosae) is a xerophytic evergreen broadleaf shrub native to semi-arid and desert regions; however, its drought-tolerance mechanisms remain poorly understood. Here, we report the assembly of a reference-grade genome for A. mongolicus, describe its evolutionary history within the legume family, and examine its drought-tolerance mechanisms. The assembled genome is 843.07 Mb in length, with 98.7% of the sequences successfully anchored to the nine chromosomes of A. mongolicus. The genome is predicted to contain 47 611 protein-coding genes, and 70.71% of the genome is composed of repetitive sequences; these are dominated by transposable elements, particularly long-terminal-repeat retrotransposons. Evolutionary analyses revealed two whole-genome duplication (WGD) events at 130 and 58 million years ago (mya) that are shared by the genus Ammopiptanthus and other legumes, but no species-specific WGDs were found within this genus. Ancestral genome reconstruction revealed that the A. mongolicus genome has undergone fewer rearrangements than other genomes in the legume family, confirming its status as a "relict plant". Transcriptomic analyses demonstrated that genes involved in cuticular wax biosynthesis and transport are highly expressed, both under normal conditions and in response to polyethylene glycol-induced dehydration. Significant induction of genes related to ethylene biosynthesis and signaling was also observed in leaves under dehydration stress, suggesting that enhanced ethylene response and formation of thick waxy cuticles are two major mechanisms of drought tolerance in A. mongolicus. Ectopic expression of AmERF2, an ethylene response factor unique to A. mongolicus, can markedly increase the drought tolerance of transgenic Arabidopsis thaliana plants, demonstrating the potential for application of A. mongolicus genes in crop improvement.

4.
Plant Commun ; 2(6): 100247, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34778752

RESUMO

Pecan (Carya illinoinensis) is a tree nut crop of worldwide economic importance that is rich in health-promoting factors. However, pecan production and nut quality are greatly challenged by environmental stresses such as the outbreak of severe fungal diseases. Here, we report a high-quality, chromosome-scale genome assembly of the controlled-cross pecan cultivar 'Pawnee' constructed by integrating Nanopore sequencing and Hi-C technologies. Phylogenetic and evolutionary analyses reveal two whole-genome duplication (WGD) events and two paleo-subgenomes in pecan and walnut. Time estimates suggest that the recent WGD event and considerable genome rearrangements in pecan and walnut account for expansions in genome size and chromosome number after the divergence from bayberry. The two paleo-subgenomes differ in size and protein-coding gene sets. They exhibit uneven ancient gene loss, asymmetrical distribution of transposable elements (especially LTR/Copia and LTR/Gypsy), and expansions in transcription factor families (such as the extreme pecan-specific expansion in the far-red impaired response 1 family), which are likely to reflect the long evolutionary history of species in the Juglandaceae. A whole-genome scan of resequencing data from 86 pecan scab-associated core accessions identified 47 chromosome regions containing 185 putative candidate genes. Significant changes were detected in the expression of candidate genes associated with the chitin response pathway under chitin treatment in the scab-resistant and scab-susceptible cultivars 'Excell' and 'Pawnee'. These findings enable us to identify key genes that may be important susceptibility factors for fungal diseases in pecan. The high-quality sequences are valuable resources for pecan breeders and will provide a foundation for the production and quality improvement of tree nut crops.


Assuntos
Carya/genética , Carya/imunologia , Evolução Molecular , Fungos do Gênero Venturia/patogenicidade , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Carya/microbiologia , Mapeamento Cromossômico , Produtos Agrícolas/genética , Produtos Agrícolas/imunologia , Genoma de Planta , Filogenia , Melhoramento Vegetal/métodos
5.
Nat Genet ; 51(6): 1052-1059, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31152161

RESUMO

Maize is one of the most important crops globally, and it shows remarkable genetic diversity. Knowledge of this diversity could help in crop improvement; however, gold-standard genomes have been elucidated only for modern temperate varieties. Here, we present a high-quality reference genome (contig N50 of 15.78 megabases) of the maize small-kernel inbred line, which is derived from a tropical landrace. Using haplotype maps derived from B73, Mo17 and SK, we identified 80,614 polymorphic structural variants across 521 diverse lines. Approximately 22% of these variants could not be detected by traditional single-nucleotide-polymorphism-based approaches, and some of them could affect gene expression and trait performance. To illustrate the utility of the diverse SK line, we used it to perform map-based cloning of a major effect quantitative trait locus controlling kernel weight-a key trait selected during maize improvement. The underlying candidate gene ZmBARELY ANY MERISTEM1d provides a target for increasing crop yields.


Assuntos
Estudos de Associação Genética , Genoma de Planta , Genômica , Fenótipo , Zea mays/genética , Biologia Computacional/métodos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Endogamia , Anotação de Sequência Molecular , Melhoramento Vegetal , Plantas Geneticamente Modificadas , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável
6.
Nat Commun ; 10(1): 1216, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872580

RESUMO

Efficient crop improvement depends on the application of accurate genetic information contained in diverse germplasm resources. Here we report a reference-grade genome of wild soybean accession W05, with a final assembled genome size of 1013.2 Mb and a contig N50 of 3.3 Mb. The analytical power of the W05 genome is demonstrated by several examples. First, we identify an inversion at the locus determining seed coat color during domestication. Second, a translocation event between chromosomes 11 and 13 of some genotypes is shown to interfere with the assignment of QTLs. Third, we find a region containing copy number variations of the Kunitz trypsin inhibitor (KTI) genes. Such findings illustrate the power of this assembly in the analysis of large structural variations in soybean germplasm collections. The wild soybean genome assembly has wide applications in comparative genomic and evolutionary studies, as well as in crop breeding and improvement programs.


Assuntos
Genoma de Planta/genética , Glycine max/genética , Melhoramento Vegetal/métodos , Locos de Características Quantitativas/genética , Evolução Biológica , Variações do Número de Cópias de DNA , Domesticação , Genômica/métodos , Genótipo , Anotação de Sequência Molecular , Peptídeos/genética , Proteínas de Plantas/genética , Translocação Genética/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa